Carbon-sulfur bond cross-coupling has become more and more attractive as an alternative protocol to establish carbon-carbon and carbon-heteroatom bonds. Diverse transformations through transition-metal-catalyzed C-S bond activation and cleavage have recently been developed. This review summarizes the advances in transition-metal-catalyzed cross-coupling via carbon-sulfur bond activation and cleavage since late 2012 as an update of the critical review on the same topic published in early 2013 (Chem. Soc. Rev., 2013, 42, 599-621), which is presented by the categories of organosulfur compounds, that is, thioesters, thioethers including heteroaryl, aryl, vinyl, alkyl, and alkynyl sulfides, ketene dithioacetals, sulfoxides including DMSO, sulfones, sulfonyl chlorides, sulfinates, thiocyanates, sulfonium salts, sulfonyl hydrazides, sulfonates, thiophene-based compounds, and C[double bond, length as m-dash]S functionality-bearing compounds such as thioureas, thioamides, and carbon disulfide, as well as the mechanistic insights. An overview of C-S bond cleavage reactions with stoichiometric transition-metal reagents is briefly given. Theoretical studies on the reactivity of carbon-sulfur bonds by DFT calculations are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cs00837c | DOI Listing |
Org Lett
January 2025
Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
Thioxanthone synthesis from -silylaryl triflates and thioureas is disclosed. Double aryne insertion into the C═S double bond of thioureas and subsequent hydrolysis realized the facile preparation of thioxanthones. A simple reaction procedure and good accessibility of -silylaryl triflates allowed us to synthesize a wide range of highly functionalized thioxanthones.
View Article and Find Full Text PDFMolecules
December 2024
College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
C-S lyase is a crucial enzyme responsible for the formation of sulfur-containing flavor compounds in . We investigated the involvement of C-S lyase in the synthesis of ergothioneine (EGT) in , a high-producing edible mushroom. Through experimental and computational approaches, we identified 2, a C-S lyase, as a key enzyme involved in EGT synthesis in .
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.
In light of the extensive applications of sulfur-containing heterocyclic compounds in drug discovery, agrochemicals, and advanced materials, the construction of complex sulfur-containing molecular scaffolds has flourished in recent years. There is a profound interest in synthetic methods for forming carbon-sulfur bonds. Regarding this, transition metal (TM)-catalyzed C-H bond activation has emerged as a valuable means for the rapid formation of C-S bonds, although it is comparatively less explored than C-N or C-C bonds.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Hamburg, Germany.
The photolysis of disulfide bonds is implicated in denaturation of proteins exposed to ultraviolet light. Despite this biological relevance in stabilizing the structure of many proteins, the mechanisms of disulfide photolysis are still contested after decades of research. Herein, we report new insight into the photochemistry of L-cystine in aqueous solution by femtosecond X-ray absorption spectroscopy at the sulfur K-edge.
View Article and Find Full Text PDFJ Org Chem
October 2024
School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Sector-30, Gandhinagar 382030, India.
A visible light-driven photoredox-catalyzed direct C(sp)-H functionalization of N-H free indoles with quinoxalinones generated in situ from 2,2-dihydroxy-1-indene-1,3(2)-dione and phenylene-1,2-diamines has been reported with the aid of Na-Eosin Y as the photocatalyst and the Hünig base as the sacrificial electron and proton donor. The reaction provides easy access to a variety of quaternary-centered C-3 selective indole-substituted tertiary alcohols in good yields. Mechanistic studies demonstrated the realization of photoredox-catalyzed in situ quinoxalinone formation and their proton-coupled single electron reduction to the corresponding ketyl radicals followed by cross-coupling with indoles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!