Pollen-derived porous carbon decorated with cobalt/iron sulfide hybrids as cathode catalysts for flexible all-solid-state rechargeable Zn-air batteries.

Nanoscale

School of Physics and Materials Science, Anhui University, Hefei, 230601, China. and Key Laboratory of Photoelectric Conversion Energy Materials and Devices of Anhui Province, Key Laboratory of Hybrid Material Structure and Function Regulation, Ministry of Education, Anhui University, Hefei, 230601, China.

Published: June 2020

The development of flexible all-solid-state rechargeable Zn-air batteries (FS-ZABs) for wearable applications faces challenges from the balance between performance and flexibility of the battery; efficient cathode catalyst and reasonable electrode construction design are key factors. Herein, a low-cost pollen derived N,S co-doped porous carbon decorated with Co9S8/Fe3S4 nanoparticle hybrids (Co-Fe-S@NSRPC) has been synthesized. Owing to the active Co9S8/Fe3S4 nanoparticles, N,S co-doping, and large specific area of the pollen derived porous carbon matrix, the Co-Fe-S@NSRPC composite exhibits an excellent bifunctional catalytic activity with a small potential gap (ΔE = 0.80 V) between the half-wave potential for the ORR (0.80 V) and the potential at 10 mA cm-2 for the OER (1.60 V), and endows a liquid Zn-air battery with a high power density of 138 mW cm-2, a larger specific capacity of 891 mA h g-1 and a stable rechargeability of up to 331 cycles. Based on the Co-Fe-S@NSRPC cathode catalyst, a 2D coplanar FS-ZAB has been fabricated with specially designed parallel narrow strip electrodes alternately arrayed on a polyacrylamide polyacrylic acid copolymer hydrogel solid electrolyte. The presented FS-ZAB exhibits excellent battery performance with high open-circuit-voltage (1.415 V), competitive peak power density (78 mW cm-2), large specific capacity (785 mA h g-1) and stable rechargeability (150 cycles), offers robust flexibility to maintain stable charge/discharge capacity under different bending deformations, and provides convenient coplanar integrability to realize parallel or series connection of multiple cells in a relatively small area.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr02376kDOI Listing

Publication Analysis

Top Keywords

porous carbon
12
carbon decorated
8
flexible all-solid-state
8
all-solid-state rechargeable
8
rechargeable zn-air
8
zn-air batteries
8
cathode catalyst
8
pollen derived
8
large specific
8
exhibits excellent
8

Similar Publications

A novel composite containing CoS and nitrogen-doped amorphous porous carbon (NAPC), denoted as CoS@NAPC, was successfully synthesized from a mixture of cobalt-based ZIF-12 and sulfur through one-pot pyrolysis. The morphology and microstructure of the composites are evaluated with appropriate spectroscopic techniques. CoS@NAPC was used to modify the glassy carbon electrode (GCE) to detect Nilotinib.

View Article and Find Full Text PDF

In the long and complex process of geological evolution, the rise of the Himalayan movement and the strong Quaternary glacial movement 400,000 years ago have shaped the highly distinctive travertine landform landscape of Huanglong, China. The overflow of karst water in the high travertine layer has formed magnificent waterfalls and wonderful karst caves as well as the world's largest open-air travertine beaches and pools. The unique travertine landscape has entered the public's vision.

View Article and Find Full Text PDF

Three new types of Si-centered porous organic polymer (Si-POPs) were successfully prepared using phenolic resin-type chemistry to form C-C bonds. This new family of microporous Si-POPs manifests as uniform, microporous, spherical particles with a high specific surface area. Notably, Si-POPs were engineered to possess varying numbers of hydroxyl (-OH) groups by altering the monomer in the synthetic process.

View Article and Find Full Text PDF

Nitrogen-Doped Porous Nanofiber Aerogel-Encapsulated Staphylo-NiS Accelerating Polysulfide Conversion for Efficient Li-S Batteries.

ACS Appl Mater Interfaces

January 2025

College of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xian 710021, China.

The low conductivity of sulfur substances and the fussy effect of lithium polysulfides (LPS) limit the practical application of lithium-sulfur batteries (LSBs). In this work, NiS is in situ synthesized on N-doped 3D carbon nanofibers with an optimized pore structure as a cathode material for LSBs. The conductive carbon nanofiber skeleton with a hierarchical (micropore-mesopore-macropore) structure etched by Cd can reduce the interface resistance of the cathode and remiss volume expansion during charge-discharge progress.

View Article and Find Full Text PDF

As a crucial component of soil organic matter, humic acid (HA) persists in soil and exert a complex interaction with hydrophobic organic pollutants, yet its specific role still remains unclear. In this study, HA was obtained from weathered coal via alkaline dissolution and acidic precipitation for the adsorption of benzo[a]anthracene (BAA). Subsequently, an aging simulation was employed to assess its long-term performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!