Human adenoviruses (HAdVs) are highly contagious and result in large number of acute respiratory disease (ARD) cases with severe morbidity and mortality. Human adenovirus type 3 (HAdV-3) is the most common type that causes ARD outbreaks in Asia, Europe, and the Americas. However, there is currently no vaccine approved for its general use. The hexon protein contains the main neutralizing epitopes, provoking strong and lasting immunogenicity. In this study, a novel recombinant and attenuated adenovirus vaccine candidate against HAdV-3 was constructed based on a commercially-available replication-defective HAdV-5 gene therapy and vaccine vector. The entire HAdV-3 hexon gene was integrated into the E1 region of the vector by homologous recombination using a bacterial system. The resultant recombinants expressing the HAdV-3 hexon protein were rescued in AD293 cells, identified and characterized by RT-PCR, Western blots, indirect immunofluorescence, and electron microscopy. This potential vaccine candidate had a similar replicative efficacy as the wild-type HAdV-3 strain. However, and importantly, the vaccine strain had been rendered replication-defective and was incapable of replication in A549 cells after more than twenty-generation passages in AD293 cells. This represents a significant safety feature. The mice immunized both intranasally and intramuscularly by this vaccine candidate raised significant neutralizing antibodies against HAdV-3. Therefore, this recombinant, attenuated, and safe adenovirus vaccine is a promising HAdV-3 vaccine candidate. The strategy of using a clinically approved and replication-defective HAdV-5 vector provides a novel approach to develop universal adenovirus vaccine candidates against all the other types of adenoviruses causing ARDs and perhaps other adenovirus-associated diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248191PMC
http://dx.doi.org/10.1007/s12250-020-00234-1DOI Listing

Publication Analysis

Top Keywords

vaccine candidate
16
recombinant attenuated
12
adenovirus vaccine
12
vaccine
11
novel recombinant
8
human adenovirus
8
adenovirus type
8
hexon protein
8
replication-defective hadv-5
8
hadv-3 hexon
8

Similar Publications

A Universal Strategy of Anti-Tumor mRNA Vaccine by Harnessing "Off-the-Shelf" Immunity.

Adv Sci (Weinh)

January 2025

National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, Zhejiang, 310058, China.

Personalized neoantigen cancer mRNA vaccines are promising candidates for precision medicine. However, the difficulty of identifying neoantigens heavily hinders their broad applicability. This study developed a universal strategy of anti-tumor mRNA vaccine by harnessing "off-the-shelf" immunity to known antigens.

View Article and Find Full Text PDF

Advancements in nanoparticle-based vaccine development against Japanese encephalitis virus: a systematic review.

Front Immunol

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Vaccination remains the sole effective strategy for combating Japanese encephalitis (JE). Both inactivated and live attenuated vaccines exhibit robust immunogenicity. However, the production of these conventional vaccine modalities necessitates extensive cultivation of the pathogen, incurring substantial costs and presenting significant biosafety risks.

View Article and Find Full Text PDF

An effectively protective VLP vaccine candidate for both genotypes of feline calicivirus.

Front Immunol

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Feline calicivirus (FCV) is one of the most widespread pathogens affecting feline animals. Currently, FCV is believed to be divisible into two genotypes, with prevalent strains encompassing both GI and GII. Vaccination is the primary means of preventing FCV infection, yet traditional inactivated or attenuated vaccines theoretically pose potential safety concerns.

View Article and Find Full Text PDF

Background: Nipah virus is a pathogenic virus of ruinous zoonotic potential with inflated rate of mortality in humans.

Methods: Considering the emerging threat of this pandemic virus, the present investigation amid to design vaccine by using the bioinformatics tools such as host and virus codon usage analysis, CD8+ peptide prediction, immunogenicity/allergenicity/toxicity, MHC-I allele binding prediction and subsequent population coverage and MHC-I-peptide docking analysis.

Results: In this study (conducted in 2022 at School of Biotechnology, Katra, India), a set of 11 peptides of the structural proteins of Nipah Virus were predicted and recognized by the set of MHC-I alleles that are expressed in 92% of the global human population.

View Article and Find Full Text PDF

H and B Blood Antigens Are Essential for In Vitro Replication of GII.2 Human Norovirus.

Open Forum Infect Dis

January 2025

Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan.

Background: Human norovirus (HuNoV) is a major cause of enteric infectious gastroenteritis and is classified into several genotypes based on its capsid protein amino acid sequence and nucleotide sequence of the polymerase gene. Among these, GII.4 is the major genotype worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!