Non-invasive blood-brain barrier (BBB) opening using focused ultrasound (FUS) is being tested as a means to locally deliver drugs into the brain. Such FUS therapies require injection of preformed microbubbles, currently used as contrast agents in ultrasound imaging. Although their behavior during exposure to imaging sequences has been well described, our understanding of microbubble stability within a therapeutic field is still not complete. Here, we study the temporal stability of lipid-shelled microbubbles during therapeutic FUS exposure in two timescales: the short time scale (i.e., μs of low-frequency ultrasound exposure) and the long time scale (i.e., days post-activation). We first simulated the microbubble response to low-frequency sonication, and found a strong correlation between viscosity and fragmentation pressure. Activated microbubbles had a concentration decay constant of 0.02 d but maintained a quasi-stable size distribution for up to 3 weeks (< 10% variation). Microbubbles flowing through a 4-mm vessel within a tissue-mimicking phantom (5% gelatin) were exposed to therapeutic pulses (f: 0.5 MHz, peak-negative pressure: 300 kPa, pulse length: 1 ms, pulse repetition frequency: 1 Hz, n=10). We recorded and analyzed their acoustic emissions, focusing on emitted energy and its temporal evolution, alongside the frequency content. Measurements were repeated with concentration-matched samples (10 microbubbles/ml) on day 0, 7, 14, and 21 after activation. Temporal stability decreased while inertial cavitation response increased with storage time both and , possibly due to changes in the shell lipid content. Using the same parameters and timepoints, we performed BBB opening in a mouse model (n=3). BBB opening volume measured through T1-weighted contrast-enhanced MRI was equal to 19.1 ± 7.1 mm, 21.8 ± 14 mm, 29.3 ± 2.5 mm, and 38 ± 20.1 mm on day 0, 7, 14, and 21, respectively, showing no significant difference over time (p-value: 0.49). Contrast enhancement was 24.9 ± 1.7 %, 23.7 ± 11.7 %, 28.9 ± 5.3 %, and 35 ± 13.4 %, respectively (p-value: 0.63). In conclusion, the in-house made microbubbles studied here maintain their capacity to produce similar therapeutic effects over a period of 3 weeks after activation, as long as the natural concentration decay is accounted for. Future work should focus on stability of commercially available microbubbles and tailoring microbubble shell properties towards therapeutic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250395PMC
http://dx.doi.org/10.3389/fphy.2020.00137DOI Listing

Publication Analysis

Top Keywords

temporal stability
12
bbb opening
12
stability lipid-shelled
8
lipid-shelled microbubbles
8
blood-brain barrier
8
time scale
8
concentration decay
8
microbubbles
7
therapeutic
5
temporal
4

Similar Publications

Background: Chronic obstructive pulmonary disease (COPD) affects breathing, speech production, and coughing. We evaluated a machine learning analysis of speech for classifying the disease severity of COPD.

Methods: In this single centre study, non-consecutive COPD patients were prospectively recruited for comparing their speech characteristics during and after an acute COPD exacerbation.

View Article and Find Full Text PDF

Objective: to evaluate the efficacy and chromatic stability after 4weeks, in all three thirds of the central incisor of two whitening treatments: in-office 37.5% hydrogen peroxide (HP) treatment alone, and 37.5% in-office HP followed by use of 6% HP whitening strips (WS).

View Article and Find Full Text PDF

Unlabelled: We investigated the impact of participation in post-secondary university education (PSE) on the academic knowledge of adult students with severe intellectual disability and extensive support needs (SIDESN) vs. a similar group of controls who did not participate in PSE. We also examined whether the PSE would result in a "near transfer" to basic crystallized (facts and information) and fluid (problems involving executive functions and working memory) cognitive abilities, the contribution of background characteristics and crystallized and fluid abilities to their academic knowledge, semantic fluency and temporal relations.

View Article and Find Full Text PDF

For change detection in synthetic aperture radar (SAR) imagery, amplitude change detection (ACD) and coherent change detection (CCD) are widely employed. However, time-series SAR data often contain noise and variability introduced by system and environmental factors, requiring mitigation. Additionally, the stability of SAR signals is preserved when calibration accounts for temporal and environmental variations.

View Article and Find Full Text PDF

Salt marsh vegetation in the Yellow River Delta, including (), (), and (), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!