Fabrication of parts exhibiting multi-functionality has recently been complemented by hybrid polymer extrusion additive manufacturing in combination with wire embedding technology. While much mechanical characterization has been performed on parts produced with fused deposition modeling, limited characterization has been performed when combined electrical and thermal loads are applied to 3D printed multi-material parts. As such, this work describes the design, fabrication, and testing of 3D printed thermoplastic coupons containing embedded copper wires that carried current. An automated fabrication process was used employing a hybrid additive manufacturing machine that dispensed polycarbonate thermoplastic and embedded bare copper wires. Testing included AC and DC hipot testing as well as thermal testing on as-fabricated and heat treated coupons to determine the effect of porosity in the substrate. The heat-treated parts contained reduced amounts of porosity, as corroborated through scanning electron microscopy, which led to 50 % increased breakdown strength and 30 to 40 % increased heat dissipation capabilities. The results of this research are describing a set of design protocol that can be used as a guideline for 3D printed embedded electronics to predict the electrical and thermal behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250179 | PMC |
http://dx.doi.org/10.1109/access.2019.2895620 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!