With the current advances in the development of low-cost high-density array-based DNA marker technologies, cereal breeding programs are increasingly relying on genomic selection as a tool to accelerate the rate of genetic gain in seed quality traits. Different sources of genetic information are being explored, with the most prevalent being combined additive information from marker and pedigree-based data, and their interaction with the environment. In this, there has been mixed evidence on the performance of use of these data. This study undertook an extensive analysis of 907 elite winter barley ( L.) lines across multiple environments from two breeding companies. Six genomic prediction models were evaluated to demonstrate the effect of using pedigree and marker information individually and in combination, as well their interactions with the environment. Each model was evaluated using three cross-validation schemes that allows the prediction of newly developed lines (lines that have not been evaluated in any environment), prediction of new or unobserved years, and prediction of newly developed lines in unobserved years. The results showed that the best prediction model depends on the cross-validation scheme employed. In predicting newly developed lines in known environments, marker information had no advantage to pedigree information. Predictions in this scenario also benefited from including genotype-by-environment interaction in the models. However, when predicting lines and years not observed previously, marker information was superior to pedigree data. Nonetheless, such scenarios did not benefit from the addition of genotype-by-environment interaction. A combination of pedigree-based and marker-based information produced a similar or only marginal improvement in prediction ability. It was also discovered that combining populations from the different breeding programs to increase training population size had no advantage in prediction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227446PMC
http://dx.doi.org/10.3389/fpls.2020.00539DOI Listing

Publication Analysis

Top Keywords

breeding programs
12
newly developed
12
developed lines
12
genomic selection
8
seed quality
8
quality traits
8
prediction newly
8
unobserved years
8
genotype-by-environment interaction
8
prediction
7

Similar Publications

Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major concern for swine health. Isolating PRRSV is essential for identifying infectious viruses and for vaccine formulation. This study evaluated the potential of using tongue fluid (TF) from perinatal piglet mortalities for PRRSV isolation.

View Article and Find Full Text PDF

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

Optimizing nitrogen (N) sources has the potential to improve wheat tillering, nitrogen use efficiency (NUE), and grain yield, yet the underlying mechanisms remain unclear. This study hypothesizes that combining specific N sources can increase zeatin riboside + zeatin (ZR + ZT) content in tiller nodes and maintain a higher ZR + ZT/gibberellin A7 (GA) ratio, thereby promoting tiller development, enhancing NUE, and increasing yield. The effects of N source treatments on two wheat cultivars, the multi-spike Shannong 28 (SN28) and the large-spike Tainong 18 (TN18), were investigated.

View Article and Find Full Text PDF

Soybean () is a leguminous plant with a broad range of applications, particularly in agriculture and food production, where its seed composition-especially oil and protein content-is highly valued. Improving these traits is a primary focus of soybean breeding programs. In this study, we conducted a genome-wide association study (GWAS) to identify genetic loci linked to oil and protein content in seeds, using imputed genotype data for 180 Eurasian soybean varieties and the novel "genotypic twins" approach.

View Article and Find Full Text PDF

Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!