Model-informed precision dosing (MIPD) software tools are used to optimize dosage regimens in individual patients, aiming to achieve drug exposure targets associated with desirable clinical outcomes. Over the last few decades, numerous MIPD software tools have been developed. However, they have still not been widely integrated into clinical practice. This study focuses on identifying the requirements for and evaluating the performance of the currently available MIPD software tools. First, a total of 22 experts in the field of precision dosing completed a web survey to assess the importance (from 0; do not agree at all, to 10; completely agree) of 103 pre-established software tool criteria organized in eight categories: user-friendliness and utilization, user support, computational aspects, population models, quality and validation, output generation, privacy and data security, and cost. Category mean ± pooled standard deviation importance scores ranged from 7.2 ± 2.1 (user-friendliness and utilization) to 8.5 ± 1.8 (privacy and data security). The relative importance score of each criterion within a category was used as a weighting factor in the subsequent evaluation of the software tools. Ten software tools were identified through literature and internet searches: four software tools were provided by companies (DoseMeRx, InsightRX Nova, MwPharm++, and PrecisePK) and six were provided by non-company owners (AutoKinetics, BestDose, ID-ODS, NextDose, TDMx, and Tucuxi). All software tools performed well in all categories, although there were differences in terms of in-built software features, user interface design, the number of drug modules and populations, user support, quality control, and cost. Therefore, the choice for a certain software tool should be made based on these differences and personal preferences. However, there are still improvements to be made in terms of electronic health record integration, standardization of software and model validation strategies, and prospective evidence for the software tools' clinical and cost benefits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224248 | PMC |
http://dx.doi.org/10.3389/fphar.2020.00620 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!