Fifty years after the recognition of the Li-Fraumeni syndrome (LFS), our perception of cancers related to germline alterations of TP53 has drastically changed: (i) germline TP53 alterations are often identified among children with cancers, in particular soft-tissue sarcomas, adrenocortical carcinomas, central nervous system tumours, or among adult females with early breast cancers, without familial history. This justifies the expansion of the LFS concept to a wider cancer predisposition syndrome designated heritable TP53-related cancer (hTP53rc) syndrome; (ii) the interpretation of germline TP53 variants remains challenging and should integrate epidemiological, phenotypical, bioinformatics prediction, and functional data; (iii) the penetrance of germline disease-causing TP53 variants is variable, depending both on the type of variant (dominant-negative variants being associated with a higher cancer risk) and on modifying factors; (iv) whole-body MRI (WBMRI) allows early detection of tumours in variant carriers and (v) in cancer patients with germline disease-causing TP53 variants, radiotherapy, and conventional genotoxic chemotherapy contribute to the development of subsequent primary tumours. It is critical to perform TP53 testing before the initiation of treatment in order to avoid in carriers, if possible, radiotherapy and genotoxic chemotherapies. In children, the recommendations are to perform clinical examination and abdominal ultrasound every 6 months, annual WBMRI and brain MRI from the first year of life, if the TP53 variant is known to be associated with childhood cancers. In adults, the surveillance should include every year clinical examination, WBMRI, breast MRI in females from 20 until 65 years and brain MRI until 50 years.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609280 | PMC |
http://dx.doi.org/10.1038/s41431-020-0638-4 | DOI Listing |
JNCI Cancer Spectr
January 2025
Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.
Li-Fraumeni syndrome is a cancer predisposition syndrome caused by pathogenic TP53 germline variants and associated with a high lifelong cancer risk. We analysed the German LFS registry that contains data on 304 individuals. Cancer phenotypes were correlated with variants grouped according to their ability to transactivate target genes in a yeast assay using a traditional (non-functional, partially-functional) and a novel (clusters A, B, C) classification of variants into different groups.
View Article and Find Full Text PDFBio Protoc
January 2025
Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA, USA.
Mouse embryonic fibroblasts (MEFs) derived from genetically modified mice are a valuable resource for studying gene function and regulation. The MEF system can also be combined with rescue studies to characterize the function of mutant genes/proteins, such as disease-causing variants. However, primary MEFs undergo senescence soon after isolation and passaging, making long-term genetic manipulations difficult.
View Article and Find Full Text PDFInt J Gynecol Pathol
January 2025
Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.
The term verruciform acanthotic vulvar intraepithelial neoplasia (vaVIN) was coined to describe HPV-independent p53-wildtype lesions with characteristic clinicopathologic characteristics and association with vulvar squamous cell carcinoma (vSCC). We aimed to expand on the molecular landscape of vaVIN using comprehensive sequencing and copy number variation profiling. vaVIN diagnosis in institutional cases was confirmed by a second review, plus negative p16 and wildtype p53 by immunohistochemistry.
View Article and Find Full Text PDFPrimary testicular diffuse large B-cell lymphoma (PT-DLBCL) is a rare and aggressive lymphoma with molecular heterogeneity not well characterize. In this study, we performed next-generation sequencing analysis for a large number of DNA and RNA samples from patients with PT-DLBCL. DNA sequencing analysis identified ≥ 3 chromosomes with copy number variations (CNVs) and microsatellite instability as prognostic biomarkers, rather than mutations and genetic subtypes.
View Article and Find Full Text PDFCancer Cytopathol
February 2025
Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA.
Background: Major mutations (e.g., KRAS, GNAS, TP53, SMAD4) in pancreatic cyst fluid (PCF) are useful for classifying and risk stratifying certain cyst types, particularly in cases with nondiagnostic cytology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!