Wheat is a major food crop, with around 765 million tonnes produced globally. The largest wheat producers include the European Union, China, India, Russia, United States, Canada, Pakistan, Australia, Ukraine and Argentina. Cultivation of wheat across such diverse global environments with variation in climate, biotic and abiotic stresses, requires cultivars adapted to a range of growing conditions. One intrinsic way that wheat achieves adaptation is through variation in phenology (seasonal timing of the lifecycle) and related traits (e.g., those affecting plant architecture). It is important to understand the genes that underlie this variation, and how they interact with each other, other traits and the growing environment. This review summarises the current understanding of phenology and developmental traits that adapt wheat to different environments. Examples are provided to illustrate how different combinations of alleles can facilitate breeding of wheat varieties with optimal crop performance for different growing regions or farming systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7784700 | PMC |
http://dx.doi.org/10.1038/s41437-020-0320-1 | DOI Listing |
Mol Breed
January 2025
Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway.
Unlabelled: Genomic selection-based breeding programs offer significant advantages over conventional phenotypic selection, particularly in accelerating genetic gains in plant breeding, as demonstrated by simulations focused on combating Fusarium head blight (FHB) in wheat. FHB resistance, a crucial trait, is challenging to breed for due to its quantitative inheritance and environmental influence, leading to slow progress using conventional breeding methods. Stochastic simulations in our study compared various breeding schemes, incorporating genomic selection (GS) and combining it with speed breeding, against conventional phenotypic selection.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Animal Science, Azadshahr Branch Islamic Azad University Azadshahr Iran.
Wheat gluten is a by-product of the wheat starch industry, rich in bioactive peptides. Spray drying is an effective method for improving the stability of bioactive compounds. So, the aim of this study was to produce gluten hydrolysate by different proteases (alcalase, pancreatin, and trypsin) at different times (40-200 min).
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Southwest State Key Laboratory of Traditional Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China.
This study evaluates the therapeutic impact of Fructus aurantii (FA) stir-baked with tartary buckwheat bran (TBB) on functional dyspepsia (FD), employing a reserpine at the dose of 5 mg/kg to rats. FA, a traditional Chinese herbal medicine, is processed with TBB to enhance its gastrointestinal motility benefits. The study's objectives were to assess the impact of this preparation on intestinal flora, SCFA levels, and metabolomic profiles in FD.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Agricultural Engineering Research, Khorasan Razavi Agricultural and Natural Resources, Research and Education Center AREEO Mashhad Islamic Republic of Iran.
This study investigated the effects of different formulations on the technological and sensory properties of bread. The bread formulation included 9 variations of sourdough treatments and 4 variations of wheat flour and oat flour percentages. Results demonstrated that the highest increase in dough volume occurred in samples containing sourdough made from wheat, oat, , and at 64.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, Group Raw Material Based Brewing and Beverage Technology Freising Germany.
Starch and non-starch polysaccharides ((N)SPs) are relevant in cereal-based beverages. Although their molar mass and conformation are important to the sensory characteristics of beer and non-alcoholic beer, their triggering mechanism in the mouth is not fully understood. Soft tribology has emerged as a tool to mimic oral processing (drinking).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!