Risk evaluations for agricultural chemicals are necessary to preserve healthy populations of honey bee colonies. Field studies on whole colonies are limited in behavioural research, while results from lab studies allow only restricted conclusions on whole colony impacts. Methods for automated long-term investigations of behaviours within comb cells, such as brood care, were hitherto missing. In the present study, we demonstrate an innovative video method that enables within-cell analysis in honey bee (Apis mellifera) observation hives to detect chronic sublethal neonicotinoid effects of clothianidin (1 and 10 ppb) and thiacloprid (200 ppb) on worker behaviour and development. In May and June, colonies which were fed 10 ppb clothianidin and 200 ppb thiacloprid in syrup over three weeks showed reduced feeding visits and duration throughout various larval development days (LDDs). On LDD 6 (capping day) total feeding duration did not differ between treatments. Behavioural adaptation was exhibited by nurses in the treatment groups in response to retarded larval development by increasing the overall feeding timespan. Using our machine learning algorithm, we demonstrate a novel method for detecting behaviours in an intact hive that can be applied in a versatile manner to conduct impact analyses of chemicals, pests and other stressors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7251098 | PMC |
http://dx.doi.org/10.1038/s41598-020-65425-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!