https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=32457383&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 324573832020100720231111
2045-23221012020May26Scientific reportsSci RepTemporal rate is not a distinct perceptual metric.86548654865410.1038/s41598-020-64984-4Sensory adaptation experiments have revealed the existence of 'rate after-effects' - adapting to a relatively fast rate makes an intermediate test rate feel slow, and adapting to a slow rate makes the same moderate test rate feel fast. The present work aims to deconstruct the concept of rate and clarify how exactly the brain processes a regular sequence of sensory signals. We ask whether rate forms a distinct perceptual metric, or whether it is simply the perceptual aggregate of the intervals between its component signals. Subjects were exposed to auditory or visual temporal rates (a 'slow' rate of 1.5 Hz and a 'fast' rate of 6 Hz), before being tested with single unfilled intervals of varying durations. Results show adapting to a given rate strongly influences the perceived duration of a single empty interval. This effect is robust across both interval reproduction and duration discrimination judgments. These findings challenge our understanding of rate perception. Specifically, they suggest that contrary to some previous assertions, the perception of sequence rate is strongly influenced by the perception of the sequence's component duration intervals.MotalaAyshaA0000-0003-0279-4628School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK. amotala2@uwo.ca.Brain and Mind Institute, Western University, London, ON, N6A 5B7, Canada. amotala2@uwo.ca.HeronJamesJ0000-0003-3857-5056Bradford School of Optometry and Vision Science, University of Bradford, Bradford, BD7 1DP, UK.McGrawPaul VPVVisual Neuroscience Group, School of Psychology, University of Nottingham, Nottingham, NG7 2RD, UK.RoachNeil WNW0000-0002-4155-745XVisual Neuroscience Group, School of Psychology, University of Nottingham, Nottingham, NG7 2RD, UK.WhitakerDavidDSchool of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK. whitakerd@cardiff.ac.uk.engWT097387WT_Wellcome TrustUnited KingdomJournal ArticleResearch Support, Non-U.S. Gov't20200526
EnglandSci Rep1015632882045-2322IMSci Rep. 2020 Jul 7;10(1):11413. doi: 10.1038/s41598-020-68539-532636428The authors declare no competing interests.
20198920204192020528602020528602020528612020526epublish32457383PMC725092010.1038/s41598-020-64984-410.1038/s41598-020-64984-4Provasi J, Anderson DI, Barbu-Roth M. Rhythm perception, production, and synchronization during the perinatal period. Frontiers in Psychology. 2014;5:1048. doi: 10.3389/fpsyg.2014.01048.10.3389/fpsyg.2014.01048PMC416689425278929Hattori Y, Tomonaga M, Matsuzawa T. Spontaneous synchronized tapping to an auditory rhythm in a chimpanzee. Scientific Reports. 2013;3:1566. doi: 10.1038/srep01566.10.1038/srep01566PMC361009723535698Godøy RI, Song M, Nymoen K, Haugen MR, Jensenius AR. Exploring sound-motion similarity in musical experience. Journal of New Music Research. 2016;45:210–222. doi: 10.1080/09298215.2016.1184689.10.1080/09298215.2016.1184689Nobre AC, van Ede F. Anticipated moments: Temporal structure in attention. Nature Reviews Neuroscience. 2017;19:34. doi: 10.1038/nrn.2017.141.10.1038/nrn.2017.14129213134Garner WR, Gottwald RL. The perception and learning of temporal patterns. Quarterly Journal of Experimental Psychology. 1968;20:97–109. doi: 10.1080/14640746808400137.10.1080/146407468084001375653429Heron J, et al. Duration channels mediate human time perception. Proceedings of the Royal Society of London B: Biological Sciences. 2012;279:690–698. doi: 10.1098/rspb.2011.1131.10.1098/rspb.2011.1131PMC324872721831897Blakemore CT, Campbell FW. On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. Journal of Physiology. 1969;203:237–260. doi: 10.1113/jphysiol.1969.sp008862.10.1113/jphysiol.1969.sp008862PMC13515265821879Levitan CA, Ban YHA, Stiles NRB, Shimojo S. Rate perception adapts across the senses: evidence for a unified timing mechanism. Scientific Reports. 2015;5(6):8857. doi: 10.1038/srep08857.10.1038/srep08857PMC489440125748443Becker MW, Rasmussen IP. The rhythm aftereffect: support for time sensitive neurons with broad overlapping tuning curves. Brain and Cognition. 2007;64:274–281. doi: 10.1016/j.bandc.2007.03.009.10.1016/j.bandc.2007.03.00917478023Motala A, Heron J, McGraw PV, Roach NW, Whitaker D. Rate after-effects fail to transfer cross-modally: Evidence for distributed sensory timing mechanisms. Scientific Reports. 2018;8:924. doi: 10.1038/s41598-018-19218-z.10.1038/s41598-018-19218-zPMC577242329343859Kanai R, Paffen CLE, Hogendoorn H, Verstraten FAJ. Time dilation in dynamic visual display. Journal of Vision. 2006;6:1421–1430.17209745Ono F, Kitazawa S. Shortening of subjective visual intervals followed by repetitive stimulation. PLoS ONE. 2011;6:e28722. doi: 10.1371/journal.pone.0028722.10.1371/journal.pone.0028722PMC324167622194896Treisman M, Faulkner A, Naish PLN, Brogan D. The internal clock: evidence for a temporal oscillator underlying time perception with some estimates of its characteristic frequency. Perception. 1990;19:705–743. doi: 10.1068/p190705.10.1068/p1907052130371Johnston A, Arnold DH, Nishida S. Spatially localized distortions of event time. Current Biology. 2006;16:472–479. doi: 10.1016/j.cub.2006.01.032.10.1016/j.cub.2006.01.03216527741Ayhan I, Bruno A, Nishida S, Johnston A. Spatial tuning of adaptation-induced temporal compression. Journal of Vision. 2009;9:1084. doi: 10.1167/9.8.1084.10.1167/9.8.108420053065Johnston A, Bruno A, Ayhan I. Retinotopic selectivity of adaptation-based compression of event duration: Reply to Burr, Cicchini, Arrighi, and Morrone. Journal of Vision. 2011;11:21a–21a. doi: 10.1167/11.2.21a.10.1167/11.2.21a21357369Karmarkar RU, Buonomano VD. Timing in the absence of clocks: Encoding time in neural network states. Neuron. 2007;53:427. doi: 10.1016/j.neuron.2007.01.006.10.1016/j.neuron.2007.01.006PMC185731017270738Burr D, Tozzi A, Morrone MC. Neural mechanisms for timing visual events are spatially selective in real-world coordinates. Nature Neuroscience. 2007;10:423–425. doi: 10.1038/nn1874.10.1038/nn187417369824Stauffer CC, Haldemann J, Troche SJ, Rammsayer TH. Auditory and visual temporal sensitivity: Evidence for a hierarchical structure of modality-specific and modality-independent levels of temporal information processing. Psychological Research. 2012;76:20–31. doi: 10.1007/s00426-011-0333-8.10.1007/s00426-011-0333-821461936Pashler H. Perception and production of brief durations: Beat-based versus interval-based timing. Journal of Experimental Psychology: Human Perception & Performance. 2001;27:485–493.11318062Grahn JA. Neural mechanisms of rhythm perception: Current findings and future perspectives. Topics in Cognitive Sciences. 2012;4:585–606. doi: 10.1111/j.1756-8765.2012.01213.x.10.1111/j.1756-8765.2012.01213.x22811317Grahn JA, Brett M. Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience. 2007;19:893–906. doi: 10.1162/jocn.2007.19.5.893.10.1162/jocn.2007.19.5.89317488212Horr NK, Di Luca M. Taking a long look at isochrony: Perceived duration increases with temporal, but not stimulus regularity. Attention, Perception & Psychophysics. 2015;77:592–602. doi: 10.3758/s13414-014-0787-z.10.3758/s13414-014-0787-zPMC433510125341650Horr NK, Di Luca M. Timing rhythms: Perceived duration increases with a predictable temporal structure of short interval fillers. PLoS ONE. 2015;10:e0141018. doi: 10.1371/journal.pone.0141018.10.1371/journal.pone.0141018PMC460879126474047Madison G, Merker B. Human sensorimotor tracking of continuous subliminal deviations from isochrony. Neuroscience Letters. 2004;370:69–73. doi: 10.1016/j.neulet.2004.07.094.10.1016/j.neulet.2004.07.09415489020Miller NS, McAuley JD. Tempo sensitivity in isochronous tone sequences: The multiple-look model revisited. Perception & Psychophysics. 2005;67:1150–1160. doi: 10.3758/BF03193548.10.3758/BF0319354816502837Drake C, Botte MC. Tempo sensitivity in auditory sequences: Evidence for a multiple-look model. Perception & Psychophysics. 1993;54:277–286. doi: 10.3758/BF03205262.10.3758/BF032052628414886Teki S, Grube M, Kumar S, Griffiths T. Distinct neural substrates of duration-based and beat-based auditory timing. Journal of Neuroscience. 2011;31:3805. doi: 10.1523/JNEUROSCI.5561-10.2011.10.1523/JNEUROSCI.5561-10.2011PMC307409621389235Teki S, Grube M, Griffiths T. A Unified Model of Time Perception Accounts for Duration-Based and Beat-Based Timing Mechanisms. Frontiers in Integrative Neuroscience. 2012;5:90. doi: 10.3389/fnint.2011.00090.10.3389/fnint.2011.00090PMC324961122319477Rammsayer TH, Brandler S. Aspects of temporal information processing: A dimensional analysis. Psychological Research. 2004;69:115–123. doi: 10.1007/s00426-003-0164-3.10.1007/s00426-003-0164-314758474García-Pérez MA. Does time ever fly or slow down? The difficult interpretation of psychophysical data on time perception. Frontiers in Human Neuroscience. 2014;8:415.PMC405126424959133Mioni G, Stablum F, McClintock SM, Grondin S. Different methods for reproducing time, different results. Attention, Perception & Psychophysics. 2014;76:675–681. doi: 10.3758/s13414-014-0625-3.10.3758/s13414-014-0625-3PMC410899324470257Wearden, J. H. Applying the scalar timing model to human time psychology: Progress and challenges. Time and mind II: Information processing perspectives, 21–39 (2003).Motala, A. The nature of sensory time perception – centralised or distributed? PhD Thesis. (Cardiff University, Cardiff, 2019).