Temporal variation in seawater temperature plays a crucial role in coral reef ecology. Nanwan Bay, Southern Taiwan is home to well-developed coral reefs, which frequently experience cold-water intrusions caused by internal wave-induced upwelling, that manifest in distinct daily temperature minima. These temperature minima and their associated sources were studied by recording in situ bottom temperatures and sea levels observed at depths of 5 and 30 m from May 2007 to September 2008. These data were then compared to the East Asian Seas Nowcast/Forecast System, and it was found that daily temperature minima presented large variations with magnitudes of 2-3 °C over periods from days to months. It was further demonstrated that the cold-water intrusions may have originated from depths of ~100 m and were strongly affected by westward propagating mesoscale eddies from the Pacific basin. An impinging warm anticyclonic eddy in July 2007 may have combined with the El Niño, resulting in temperatures surpassing 29 °C and degree heating days >4.0 °C-days at both depths, which were coincidental with a mass coral bleaching event. This eddy's impact was additionally evident in high correlations between daily temperature minima and residual sea levels, suggesting that mesoscale eddies alter stratification, substantially influence temperature variation, and play important roles in understanding ecological processes on coral reefs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250922 | PMC |
http://dx.doi.org/10.1038/s41598-020-65194-8 | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Highway, DeKalb, IL, USA.
Room temperature ionic liquids (RTILs) are interesting due to their myriad uses in fields such as catalysis and electrochemistry. Their properties are intimately related to their structures, yet structural understanding is difficult to achieve. This work presents a derivation of an approximate expression for the radial distribution function, ().
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Condensed Matter Physics, Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700 064, Kolkata, West Bengal, 700064, INDIA.
β-Mn-type chiral cubic CoxZnyMnz (x + y + z = 20) alloys present a intriguing platform for exploring topological magnetic orderings with promising spintronic potential. This study examines the magnetotransport properties of Co6.5Ru1.
View Article and Find Full Text PDFSci Data
December 2024
Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA.
Butterflies serve as key indicators of climate change impacts such as shifts in emergence timing and shifts in geographic range and distribution. However, the development of commonly used ecological forecasts based on butterfly physiological tolerance of temperature change has lagged behind that of other taxonomic groups. Here, we provide a series of related datasets comprising butterfly thermal physiological traits to enable such forecasts.
View Article and Find Full Text PDFPhys Rev E
November 2024
Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia.
We calculate the shear relaxation times in four important simple monatomic model fluids: Lennard-Jones, Yukawa, soft-sphere, and hard-sphere fluids. It is observed that in properly reduced units, the shear relaxation times exhibit quasiuniversal behavior when the density increases from the gaslike low values to the high-density regime near crystallization. They first decrease with density at low densities, reach minima at moderate densities, and then increase toward the freezing point.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
The concept of superhalogen was proposed for more than 40 years, and it has never been associated with planar tetracoordinate fluorine (ptF) species. In this work, using Li as the ligands and Cl, Br, I as the auxiliary atoms, we have designed the star-like FLiX (X = Cl, Br, I) clusters, which contain the ptF at the centers. They are all global minima (GMs) based on unbiased searches on the potential energy surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!