In this work, a freshness colorimetric sensor has been integrated with pork meat packages. The sensor tracks rising CO levels in the package associated with meat spoilage, as CO levels increase with bacterial population. The color of the sensor changes depending on the quantity of bacteria present, therefore it can be correlated with the freshness of meat, in this case pork loin. Detection is achieved by a simple photograph using a smartphone, and analyzing the grey scale from the RGB space color with a custom made app. Only 2 μL of the cocktail (all components are nontoxic) is needed to prepare the sensor, which have been integrated inside meat packages using a variety of support materials prior to sealing. The Smartphone measurements have been validated using a reference method (Checkpoint Analyzer) and the results suggest it can provide the basis for a quick test of the quality of the packaged pork.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2020.120985 | DOI Listing |
Analyst
January 2025
Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
As a marker of human metabolism, acetone is important for lipid metabolism monitoring and early detection of diabetes. In this study, we developed a handheld biosensor for acetone based on fluorescence detection by utilizing the enzymatic reaction of secondary alcohol dehydrogenase (S-ADH) with β-nicotinamide adenine dinucleotide (NADH, = 340 nm, = 490 nm). In the reaction, NADH is oxidized when acetone is reduced to 2-propanol by S-ADH, and the acetone concentration can be measured by detecting the amount of NADH consumed in this reaction.
View Article and Find Full Text PDFInt J Rob Res
January 2025
Department of Earth and Space Science and Engineering, Lassonde School of Engineering, York University, Toronto, ON, Canada.
The York University Teledyne Optech (YUTO) Mobile Mapping System (MMS) Dataset, encompassing four sequences totaling 20.1 km, was thoroughly assembled through two data collection expeditions on August 12, 2020, and June 21, 2019. Acquisitions were performed using a uniquely equipped vehicle, fortified with a panoramic camera, a tilted LiDAR, a Global Positioning System (GPS), and an Inertial Measurement Unit (IMU), journeying through two strategic locations: the York University Keele Campus in Toronto and the Teledyne Optech headquarters in City of Vaughan, Canada.
View Article and Find Full Text PDFACS Appl Nano Mater
December 2024
Assistant Professor of Material Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, Arizona 85287, United States.
Additive manufacturing known as 3D printing has transformed the material landscape, with intricate structures and rapid prototyping for modern production. While nanoscale 3D printing has made significant progress, a critical challenge remains in the rapid, high-throughput tailoring of complex nanostructures. Here, we present a 3D printing-facilitated, light-driven assembly technology for rapid surface patterning consisting of complex particle nanonetworks with balanced fabrication resolution and processing scalability.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
Smart hydrogel sensors with intrinsic responsiveness, such as pH, temperature, humidity, and other external stimuli, possess broad applications in innumerable fields such as biomedical diagnosis, environmental monitoring, and wearable electronics. However, it remains a great challenge to develop wearable structural hydrogels that possess simultaneously body temperature-responsive, adhesion-adaptable, and transparency-tunable. Herein, an innovative skin-mountable thermo-responsive hydrogel is fabricated, which endows tunable optical properties and switchable adhesion properties at different temperatures.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510632, China.
Luminol is a well-known electrochemiluminescence (ECL) fluorophore that is applied in various sensing fields as an ECL reporter. Regulating the signal off/on transition of an ECL fluorophore offers great opportunities for sensors' design; however, such attempts on luminol are extremely scarce as it was regarded to lack promising modification sites. In this study, we developed four luminol derivatives with modification at the amine site and the enol site and systematically explored possible caging strategies to regulate ECL emission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!