Background: Accidentally removed parathyroid glands are still challenging in neck surgery, leading to hypoparathyroidism characterized with abnormally low levels of parathyroid hormone. Parathyroid auto-transplantation is usually applied in compensation. To improve the efficiency of parathyroid transplantation, we introduced a method by co-transplanting with adipose-derived cells, including stromal vascular fractions (SVFs) and adipose-derived stem cells (ADSCs), and investigated the underlying molecular mechanisms involved in parathyroid transplantation survival.
Methods: Rat and human parathyroid tissues were transplanted into nude mice as parathyroid transplantation model to examine the effects of SVFs and ADSCs on grafts angiogenesis and survival rates, including blood vessel assembly and parathyroid hormone levels. Several angiogenic factors, such as vascular endothelial growth factor (VEGF)-A and fibroblast growth factor (FGF) 2, were assessed in parathyroid grafts. The effects of hypoxia were investigated on ADSCs. The modulatory roles of the eyes absent homolog 1 (EYA1), which is vital in parathyroid development, was also investigated on angiogenic factor production and secretion by ADSCs. All experimental data were statistically processed. Student's t test was used to assess significant differences between 2 groups. For multiple comparisons with additional interventions, two-way ANOVA followed by Tukey's post hoc test was performed. P < 0.05 was considered as significant.
Results: SVFs improve rat parathyroid transplantation survival and blood vessel assembly, as well as FGF2 and VEGF-A expression levels in parathyroid transplantation mice. Functional human parathyroid grafts have higher microvessel density and increased VEGF-A expression. The supernatant of ADSCs induced tubule formation and migration of human endothelial cells in vitro. Hypoxia had no effect on proliferation and apoptosis of human ADSCs but induced higher angiogenic factor levels of VEGF-A and FGF2, modulated by EYA1, which was confirmed by parathyroid glands transplantation in mice.
Conclusions: Adipose-derived cells, including ADSCs and SVFs, improve parathyroid transplantation survival via promoting angiogenesis through EYA1-regulating angiogenetic factors in vitro and in vivo. Our studies proved an effective method to improve the parathyroid autotransplantation, which is promising for clinical patients with hypoparathyroidism when parathyroid glands were accidentally injured, removed, or devascularized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249357 | PMC |
http://dx.doi.org/10.1186/s13287-020-01733-4 | DOI Listing |
Bone Res
January 2025
Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA.
The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.
View Article and Find Full Text PDFLangenbecks Arch Surg
January 2025
Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
Purpose: Assessment of tissue perfusion using near-infrared fluorescence (NIR) with indocyanine green (ICG) is gaining popularity, however reliable and objective interpretation remains a challenge. Therefore, this study aimed to establish reference curves for vital tissue perfusion across target tissues using this imaging modality.
Methods: Data from five prospective study cohorts conducted in three Dutch academic medical centres between December 2018 and June 2023 was included.
Hum Cell
January 2025
Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
Biomedicines
December 2024
Area of Physiology, Department of Health Sciencies, University of Jaen, 23071 Jaen, Spain.
: Interstitial fibrosis/tubular atrophy in kidney transplantation is an unspecific lesion induced by immune and non-immune factors, which determines the progression of chronic kidney disease. Hydroxyproline is an imino acid that is part of the molecule of collagen. The aim of this study was to assess hydroxyproline in urine microvesicles as a marker of fibrosis in the renal transplant patient.
View Article and Find Full Text PDFJ Surg Res
December 2024
Division of Pediatric Surgery, Johns Hopkins All Children's Hospital, Saint Petersburg, Florida. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!