Flexible Capacitive Curvature Sensor with One-Time Calibration for Amphibious Gait Monitoring.

Soft Robot

State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Published: April 2021

Wearable devices developed with flexible electronics have great potential applications for human health monitoring and motion sensing. Although material softness and structural flexibility provide a deformable human-machine interface to adapt to joint bending or tissue stretching/compression, flexible sensors are inconvenient in practical uses as they usually require calibration every time they are installed. This article presents an approach to design and fabricate a flexible curvature sensor to measure human articular movements for amphibious applications. This flexible sensor employs the capacitive sensing principle, where the dielectric layer and electrodes are made from the polyurethane resin and eutectic gallium-indium (EGaIn) liquid metal; and the fabrication process is implemented with shape deposition molding for batch production. The sensing method for articular rotation angles employs the Euler beam model to make the sensor reusable after one-time calibration by compensating for the unpredicted manual installation error. The illustrative application to ankle sensing in amphibious gaits shows that the root-mean-square error is within 5° for different walking speeds (0.7-1.1 m/s) in treadmill tests and the maximum error is within 3° for underwater sensing with quasi-static measurements. It is expected that the proposed waterproof flexible sensor can push the boundaries of wearable robotics, human locomotion, as well as their related applications.

Download full-text PDF

Source
http://dx.doi.org/10.1089/soro.2019.0151DOI Listing

Publication Analysis

Top Keywords

curvature sensor
8
one-time calibration
8
flexible sensor
8
flexible
6
sensor
5
sensing
5
flexible capacitive
4
capacitive curvature
4
sensor one-time
4
calibration amphibious
4

Similar Publications

Neurotransmitter release is triggered in microseconds by the two C domains of the Ca sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 CB domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca-binding loops away from the fusion site.

View Article and Find Full Text PDF

Enhanced detection of measurement anomalies in cartridge cases using 3D gray-level co-occurrence matrix.

Forensic Sci Int

January 2025

Department of Forensic Science and Technology, Sichuan Police College, No. 186, Longtouguan Road, Jiangyang District, Luzhou 646000, China; Sichuan Provincial Key Lab of Intelligent Policing, No. 186, Longtouguan Road, Jiangyang District, Luzhou 646000, China. Electronic address:

The firing pin impression left on the base of a cartridge case is a critical analytical feature in forensic science. To address the limitations of traditional manual trace analysis and mitigate the risk of secondary damage to physical evidence, we employ a line laser displacement sensor to capture and analyze three-dimensional (3D) traces of fired cartridge cases. However, when using laser displacement sensors to collect traces from metal cartridge cases, the high curvature and reflectivity of the metal surface can cause specular reflections, potentially leading to measurement anomalies in the firing pin impressions.

View Article and Find Full Text PDF

Additively Manufactured Flexible EGaIn Sensor for Dynamic Detection and Sensing on Ultra-Curved Surfaces.

Sensors (Basel)

December 2024

Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China.

Electronic skin is widely employed in multiple applications such as health monitoring, robot tactile perception, and bionic prosthetics. In this study, we fabricated millimeter-scale electronic skin featuring compact sensing units using the Boston Micro Fabrication S130 (a high-precision additive manufacturing device) and the template removal method. We used a gallium-based liquid metal and achieved an inner channel diameter of 0.

View Article and Find Full Text PDF

Fatigue and recovery-related changes in postural and core stability in sedentary employees: a study protocol.

Front Physiol

December 2024

Department of Biological and Medical Sciences, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia.

Prolonged sitting leads to a slumped posture, which indirectly influences spinal curvature and increases low back and hamstring stiffness. Active rather than passive recovery is an effective way to reduce the risks associated with such prolonged inactivity. However, it remains to be investigated which of the exercises frequently used for this purpose, the trunk stability and foam rolling exercise, is more beneficial.

View Article and Find Full Text PDF

A Hybrid Harmonic Curve Model for Multi-Streamer Hydrophone Positioning in Seismic Exploration.

Sensors (Basel)

December 2024

Geophysical Division of China Oilfield Services Ltd., Tianjin 300451, China.

Towed streamer positioning is a vital and essential stage in marine seismic exploration, and accurate hydrophone coordinates exert a direct and significant influence on the quality and reliability of seismic imaging. Current methods predominantly rely on analytical polynomial models for towed streamer positioning; however, these models often produce significant errors when fitting to streamers with high curvature, particularly during turning scenarios. To address this limitation, this study introduces a novel multi-streamer analytical positioning method that uses a hybrid harmonic function to model the three-dimensional coordinates of streamers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!