RNA-Primed Amplification for Noise-Suppressed Visualization of Single-Cell Splice Variants.

Anal Chem

Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.

Published: July 2020

Splice variants visualization is pivotal for a deeper understanding of cell growth and development. However, it remains technically challenging due to short lengths, similar sequences, and low abundance. The existing single-cell imaging strategies suffer from nonspecific amplification that causes considerable noise during visualization of the splice variants. Herein we develop a new RNA-primed amplification strategy for noise-suppressed visualization of single-cell splice variants. Block probes were designed to specifically identify the conjugated region of exons in mRNA, which was then digested by endonuclease and provided a hydroxyl group at the 3' terminal. The RNA target can act as primer to trigger rolling circle amplification, achieving visualization of splice variants with noise suppressed to nearly zero. We further explored the expression and distribution of splice variants in three breast cell lines, revealing cell-type specific mapping of this cancer suppressor gene.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c01734DOI Listing

Publication Analysis

Top Keywords

splice variants
24
rna-primed amplification
8
noise-suppressed visualization
8
visualization single-cell
8
single-cell splice
8
visualization splice
8
splice
6
variants
6
visualization
5
amplification noise-suppressed
4

Similar Publications

Dynamic Roles of RNA and RNA Epigenetics in HTLV-1 Biology.

Viruses

January 2025

Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.

Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished.

View Article and Find Full Text PDF

: The nuclear factor (NF)-kB essential modulator (NEMO) has a crucial role in the NFκB pathway. Hypomorphic pathogenic variants cause ectodermal dysplasia with immunodeficiency (EDA-ID) in affected males. However, heterozygous amorphic variants could be responsible for Incontinentia Pigmenti (IP) in female carriers.

View Article and Find Full Text PDF

Background: An estimated 10-15% of all genetic diseases are attributable to variants in noncanonical splice sites, auxiliary splice sites and deep-intronic variants. Most of these unstudied variants are classified as variants of uncertain significance (VUS), which are not clinically actionable. This study investigated two novel splice-altering variants, NM_000390.

View Article and Find Full Text PDF

The advent of next-generation sequencing (NGS) has revolutionized the analysis of genetic data, enabling rapid identification of pathogenic variants in patients with inborn errors of immunity (IEI). Sometimes, the use of NGS-based technologies is associated with challenges in the evaluation of the clinical significance of novel genetic variants. In silico prediction tools, such as SpliceAI neural network, are often used as a first-tier approach for the primary examination of genetic variants of uncertain clinical significance.

View Article and Find Full Text PDF

Background: This study aims to analyze the exploration degree of popular model organisms by utilizing annotations from the UniProtKB (Swiss-Prot) knowledge base. The research focuses on understanding the genomic and post-genomic data of various organisms, particularly in relation to aging as an integral model for studying the molecular mechanisms underlying pathological processes and physiological states.

Methods: Having characterized the organisms by selected parameters (numbers of gene splice variants, post-translational modifications, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!