Sperm differentiation encompasses a complex sequence of morphological changes that takes place in the seminiferous epithelium. In this process, haploid round spermatids undergo substantial structural and functional alterations, resulting in highly polarized sperm. Hallmark changes during the differentiation process include the formation of new organelles, chromatin condensation and nuclear shaping, elimination of residual cytoplasm, and assembly of the sperm flagella. To achieve these transformations, spermatids have unique mechanisms for protein trafficking that operate in a coordinated fashion. Microtubules and filaments of actin are the main tracks used to facilitate the transport mechanisms, assisted by motor and non-motor proteins, for delivery of vesicular and non-vesicular cargos to specific sites. This review integrates recent findings regarding the role of protein trafficking in sperm differentiation. Although a complete characterization of the interactome of proteins involved in these temporal and spatial processes is not yet known, we propose a model based on the current literature as a framework for future investigations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279445 | PMC |
http://dx.doi.org/10.3390/ijms21103702 | DOI Listing |
Curr Top Dev Biol
January 2025
School of Molecular Biosciences, Washington State University, Pullman, Washington, United States. Electronic address:
For mammalian spermatogenesis to proceed normally, it is essential that the population of testicular progenitor cells, A undifferentiated spermatogonia (A), undergoes differentiation during the A to A1 transition that occurs at the onset of spermatogenesis. The commitment of the A population to differentiation and leaving a quiescent, stem-like state gives rise to all the spermatozoa produced across the lifespan of an individual, and ultimately determines male fertility. The action of all-trans retinoic acid (atRA) on the A population is the determining factor that induces this change.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.
View Article and Find Full Text PDFEndocrinology
January 2025
Neuroendocrinology Department, ICMR-National Institute for Research in Reproductive and Child Health, J. M. Street, Parel, Mumbai 400012, India.
Estrogen through its receptors, ERα and ERβ, regulate various aspects of spermatogenesis and male fertility. Since the sperm epigenome is an important contributing factor to male fertility, we evaluated the effects of estrogen signaling activation through the ERs on sperm DNA methylome in adult rats. Whole genome-bisulfite sequencing (WGBS) in caudal sperm DNA was performed.
View Article and Find Full Text PDFNutrients
January 2025
Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
High-fat diet (HFD)-induced obesity represents a significant challenge to male reproductive health, affecting approximately 13% of the global adult population. This comprehensive review synthesizes current evidence regarding mulberry ( L.) fruit extract's therapeutic potential for HFD-induced male reproductive dysfunction.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China.
N6-methyladenosine (m6A) modification is a key methylation modification involved in reproductive processes. gene editing (MT) in cattle is known to enhance muscle mass and productivity. However, the changes in m6A modification in MT bull sperm remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!