Ultrasonography is widely used in veterinary medicine for the diagnosis of pregnancy, and can also be used to monitor abnormal pregnancies, embryonic resorption, or fetal abortion. Ultrasonography plays an important role in modern-day cetacean preventative medicine because it is a non-invasive technique, it is safe for both patient and operator, and it can be performed routinely using trained responses that enable medical procedures. Reproductive success is an important aspect of dolphin population health, as it is an indicator of the future trajectory of the population. The aim of this study is to provide additional relevant data on feto-maternal ultrasonographic monitoring in bottlenose dolphin () species, for both the clinicians and for in situ population studies. From 2009 to 2019, serial ultrasonographic exams of 11 healthy bottlenose dolphin females kept under human care were evaluated over the course of 16 pregnancies. A total of 192 ultrasound exams were included in the study. For the first time, the sonographic findings of the bottlenose dolphin organogenesis and their correlation with the stage of pregnancy are described. Furthermore, this is the first report that forecasts the cephalic presentation of the calf at birth, according to its position within the uterus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278404PMC
http://dx.doi.org/10.3390/ani10050908DOI Listing

Publication Analysis

Top Keywords

bottlenose dolphin
12
cephalic presentation
8
healthy bottlenose
8
human care
8
pregnancy fetal
4
fetal development
4
development cephalic
4
presentation descriptive
4
descriptive ultrasonographic
4
ultrasonographic findings
4

Similar Publications

Successful Treatment of Fungal Dermatitis in a Bottlenose Dolphin ().

Microorganisms

January 2025

Laboratory of Food and Environmental Hygiene, Joint Department of Veterinary Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.

In recent decades, many fungi have emerged as major causes of disease in marine mammals. This study reports on the detection of filamentous fungi in the subcutaneous tissue and wound surface on the tail fin of a managed bottlenose dolphin () emaciated due to severe digestive problems. Immunosuppression by chronic diseases and starvation decreased resistance against opportunistic infections.

View Article and Find Full Text PDF

Characteristics of neutrophil chemotaxis in bottlenose dolphin (Tursiops truncatus).

Vet Immunol Immunopathol

January 2025

Laboratory of Preventive Veterinary Medicine and Animal Health, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa-ken 252-0880, Japan. Electronic address:

Cetaceans have adapted to aquatic life by evolving various anatomic and physiologic traits, but biological defense mechanisms specific to aquatic mammals that protect against pathogenic microorganisms in the aquatic environment have not been elucidated. In this study, we investigated the migration of polymorphonuclear leukocytes in bottlenose dolphins in response to various chemotactic factors and compared the migration response with that of terrestrial animals such as cows and humans to characterize biological defense mechanisms unique to cetaceans. Bottlenose dolphin neutrophils showed strong chemotactic activity toward zymosan-activated serum and recombinant human interleukin-8 but no chemotaxis toward N-formyl-methionyl-leucyl-phenylalanine or leukotriene B at any concentration examined.

View Article and Find Full Text PDF

The development of deep convolutional generative adversarial network to synthesize odontocetes' clicks.

J Acoust Soc Am

January 2025

Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.

Odontocetes are capable of dynamically changing their echolocation clicks to efficiently detect targets, and learning their clicking strategy can facilitate the design of man-made detecting signals. In this study, we developed deep convolutional generative adversarial networks guided by an acoustic feature vector (AF-DCGANs) to synthesize narrowband clicks of the finless porpoise (Neophocaena phocaenoides sunameri) and broadband clicks of the bottlenose dolphins (Tursiops truncatus). The average short-time objective intelligibility (STOI), spectral correlation coefficient (Spe-CORR), waveform correlation coefficient (Wave-CORR), and dynamic time warping distance (DTW-Distance) of the synthetic clicks were 0.

View Article and Find Full Text PDF

Identification of Two Common Bottlenose Dolphin () Ecotypes in the Guadeloupe Archipelago, Eastern Caribbean.

Animals (Basel)

January 2025

Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, 75005 Paris, France.

The common bottlenose dolphin () exhibits significant intraspecific diversity globally, with distinct ecotypes identified in various regions. In the Guadeloupe archipelago, the citizen science NGO OMMAG has been monitoring these dolphins for over a decade, documenting two distinct morphotypes. This study investigates whether these morphotypes represent coastal and oceanic ecotypes, which have not been previously identified in the region.

View Article and Find Full Text PDF

Understanding population demography of threatened species and how they vary in relation to natural and anthropogenic stressors is essential for effective conservation. We used a long-term photographic capture-recapture dataset (1993-2020) of Indo-Pacific bottlenose dolphins () in the highly urbanised Adelaide Dolphin Sanctuary (ADS), South Australia, to estimate key demographic parameters and their variability over time. These parameters were analysed in relation to environmental variables used as indicators of local and large-scale climatic events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!