Malignant glioma (MG) is extremely aggressive and highly resistant to chemotherapeutic agents. Using electrospraying, the potent chemotherapeutic agent 7-ethyl-10-hydroxycamptothecia (SN-38) was embedded into 50:50 biodegradable poly[(d,l)-lactide--glycolide] (PLGA) microparticles (SMPs). The SMPs were stereotactically injected into the brain parenchyma of healthy rats and intratumorally injected into F98 glioma-bearing rats for estimating the pharmacodynamics and therapeutic efficacy. SN-38 was rapidly released after injection and its local (brain tissue) concentration remained much higher than that in the blood for more than 8 weeks. Glioma-bearing rats were divided into three groups-group A ( = 13; stereotactically injected pure PLGA microparticles), group B ( = 12; stereotactically injected Gliadel wafer and oral temozolomide), and group C ( = 13; stereotactic and intratumoral introduction of SMPs). The SMPs exhibited significant therapeutic efficacy, with prolonged survival, retarded tumor growth, and attenuated malignancy. The experimental results demonstrated that SMPs provide an effective and potential strategy for the treatment of MG.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285024 | PMC |
http://dx.doi.org/10.3390/pharmaceutics12050479 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!