The increasing of intracellular calcium concentration is a fundamental process for mediating osteoclastogenesis, which is involved in osteoclastic bone resorption. Cytosolic calcium binds to calmodulin and subsequently activates calcineurin, leading to NFATc1 activation, a master transcription factor required for osteoclast differentiation. Targeting the various activation processes in osteoclastogenesis provides various therapeutic strategies for bone loss. Diverse compounds that modulate calcium signaling have been applied to regulate osteoclast differentiation and, subsequently, attenuate bone loss. Thus, in this review, we summarized the modulation of the NFATc1 pathway through various compounds that regulate calcium signaling and the calcium influx machinery. Furthermore, we addressed the involvement of transient receptor potential channels in osteoclastogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279283 | PMC |
http://dx.doi.org/10.3390/ijms21103646 | DOI Listing |
J Adv Res
January 2025
Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. Electronic address:
Introduction: Bone homeostasis between osteoclast bone resorption and osteoblastic bone formation is tightly regulated by a series of factors such as the receptor activator of nuclear factor-κB ligand (RANKL). Denosumab that neutralizes RANKL is effective and widely applied in the treatment of postmenopausal osteoporosis. However, factors that participated in the RANKL-related bone remodeling process in primary and secondary osteoporosis are less known.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830046, China.
Yak milk is a potential nutrient for improving osteoporosis. However, the effect of yak milk on the expression of Caion channel TRPV5 during osteoclast (OC) differentiation is still unclear. This study used ruthenium red as a control to investigate the effect of yak milk on osteoclast differentiation and activity.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Department of Pharmacology, Nanjing Medical University, Nanjing 211166, PR China. Electronic address:
We have previously demonstrated that DEC1 promotes osteoblast differentiation. This study aims to evaluate the impact of DEC1 knockout on osteopenic activities, such as osteoclast differentiation and the expression of bone-degrading genes. To gain mechanistic insights, we employed both in vivo and in vitro experiments, utilizing cellular and molecular approaches, including osteoclast differentiation assays and RNA-seq in combination with ChIP-seq.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Department of Emergency and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, China. Electronic address:
Osteoporosis is a common inflammation-related disease in which the release of proinflammatory cytokines promotes bone loss. Oleandrin is a monomer compound extracted from the leaves of the Nerium oleander plant, has been shown to exert an anti-inflammatory effect on a variety of inflammation-related diseases. However, its role in osteoporosis and the underlying mechanisms remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!