The GTP-dependence for stimulatory and inhibitory regulation of plasma membrane adenylate cyclase activity was measured in plasma membrane fractions isolated from a variety of cell types (platelets, lymphocytes, PC12 cells, GH3 cells, NBP2 cells, and hepatocytes). This report shows that the isolation of plasma membranes for the study of GTP-dependent adenylate cyclase activity was, for some cells, enhanced by the exposure of the cells to glycerol prior to cell lysis. The isolation of plasma membranes from other cells, which did not appear to be sensitive to glycerol pretreatment, was enhanced by the removal of heavy particulate matter prior to fractionation of the cell lysate. The regulation of enzyme activity by various agents was found to be dependent upon the presence of (exogenous) GTP to varying degrees, indicating variable contamination of membrane preparations with GTP. It is concluded that (i) exposure of platelets and lymphocytes to glycerol prior to cell lysis decreases subsequent contamination of the plasma membrane preparation with GTP, and (ii) although glycerol pretreatment of other cells does not ensure the subsequent isolation of plasma membrane adenylate cyclase activity displaying high requirements for (exogenous) GTP, it is a reasonable first approach to be used during the development of procedures for the isolation of plasma membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0003-2697(88)90376-4DOI Listing

Publication Analysis

Top Keywords

isolation plasma
20
plasma membranes
16
adenylate cyclase
16
cyclase activity
16
plasma membrane
16
plasma
8
membrane adenylate
8
platelets lymphocytes
8
glycerol prior
8
prior cell
8

Similar Publications

Extracellular vesicles from pancreatic cancer and its tumour microenvironment promote increased Schwann cell migration.

Br J Cancer

January 2025

Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Background: Pancreatic ductal adenocarcinoma (PDAC) exhibits a high frequency of neural invasion (NI). Schwann cells (SCs) have been shown to be reprogrammed to facilitate cancer cell migration and invasion into nerves. Since extracellular vesicles (EVs) affect the tumour microenvironment and promote metastasis, the present study analysed the involvement of EVs from pancreatic cancer cells and their microenvironment in altering SC phenotype as part of the early events in the process of NI.

View Article and Find Full Text PDF

Tellurium, recognized as one of the technology-critical elements, should be considered as a xenobiotic. Its application, i.a.

View Article and Find Full Text PDF

Acute ischemic stroke with large vessel occlusion (LVO) continues to present a considerable challenge to global health, marked by substantial morbidity and mortality rates. Although definitive diagnostic markers exist in the form of neuroimaging, their expense, limited availability, and potential for diagnostic delay can often result in missed opportunities for life-saving interventions. Despite several past attempts, research efforts to date have been fraught with challenges likely due to multiple factors, such as the inclusion of diverse stroke types, variable onset intervals, differing pathobiologies, and a range of infarct sizes, all contributing to inconsistent circulating biomarker levels.

View Article and Find Full Text PDF

Periprosthetic joint infections (PJI) are difficult to treat due to biofilm formation on implant surfaces and the surrounding tissue, often requiring removal or exchange of prostheses along with long-lasting antibiotic treatment. Antiseptic irrigation during revision surgery might decrease bacterial biofilm load and thereby improve treatment success. This in vitro study investigated and compared the effect of five advanced wound irrigation solutions to reduce bacterial burden in the PJI microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!