Melatonin from an Antioxidant to a Classic Hormone or a Tissue Factor: Experimental and Clinical Aspects 2019.

Int J Mol Sci

Departamento de Morfología y Biología Celular, Redox Biology Group, Instituto Universitario Oncológico del Principado de Asturias (IUOPA), School of Medicine, University of Oviedo. C/ Julián Clavería 6, 33006 Oviedo, Spain.

Published: May 2020

During the last 25 years we have accomplished great advances in melatonin research, regarding antioxidant or anti-inflammatory functions, oncostatic actions, glucose metabolism regulation or plant physiology, among others. Of course, we should not forget the classical, circadian-related functions of the indole, which has recently brought up new and important findings. All together these new discoveries will likely lead the way in the next decade in terms of melatonin research. This special issue collects some of these new advances focused on different aspects of the indole.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279336PMC
http://dx.doi.org/10.3390/ijms21103645DOI Listing

Publication Analysis

Top Keywords

melatonin antioxidant
8
antioxidant classic
4
classic hormone
4
hormone tissue
4
tissue factor
4
factor experimental
4
experimental clinical
4
clinical aspects
4
aspects 2019
4
2019 years
4

Similar Publications

Melatonin (MLT) is an indole derivative that exhibits hormone-like activities in plants, regulating multiple aspects of growth and development. Due to its role in mitigating oxidative stress and facilitating osmoprotectant accumulation, MLT enhances abiotic stress tolerance, although the pathways and metabolic mechanisms involved remain unclear despite being studied in various crops. This work aimed to investigate the changes elicited by the exogenous MLT application at different concentrations (10, 50, 150 μM) and its role in mitigating the salinity stress in Lactuca sativa L.

View Article and Find Full Text PDF

Melatonin (MT), an indole compound, can boost plant growth under abiotic stress conditions. This experiment aims to elucidate the synergistic effect of MT and ascorbic acid (AsA) in mitigating salinity stress by assessing the photosynthetic and antioxidant capacity of the maize inbred lines H123 and W961. The results indicated that exogenous MT and AsA significantly improved photosynthetic efficiency and biomass of maize under salinity stress.

View Article and Find Full Text PDF

Melatonin is considered an effective bio-stimulant that is crucial in managing several abiotic stresses including drought. However, its potential mechanisms against drought stress in fragrant roses are not well understood. Here, we aim to investigate the role of melatonin on plants cultivated under drought stress (40 % field capacity) and normal irrigation (80 % field capacity).

View Article and Find Full Text PDF

The objective was to determine the research status and hotspots of seasonal affective disorders (SAD) based on bibliometric tools, which will contribute to the further research in this field. We used bibliometric tools CiteSpace and VOSviewer to conduct visual quantitative analysis on 465 SAD literatures in the Web of Science core database from 2008 to 2023 from multiple perspectives such as collaboration network, keywords, and literature citations. At the same time, we used Microsoft Word to make relevant tables.

View Article and Find Full Text PDF

Defect-Induced Electron Localization Promotes D2O Dissociation and Nitrile Adsorption for Deuterated Amines.

Angew Chem Int Ed Engl

January 2025

Tianjin University, Department of Chemistry, #92, Weijin Road, Nankai District, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, CHINA.

Electrochemical reductive deuteration of nitriles is a promising strategy for synthesizing deuterated amines with D2O as the deuterated source. However, this reaction suffers from high overpotentials owing to the sluggish D2O dissociation kinetics and high thermodynamic stability of the C≡N triple bond. Here, low-coordinated copper (LC-Cu) is designed to decrease the overpotential for the electrosynthesis of the precursor of Melatonin-d4, 5-methoxytryptamine-d4, by 100 mV with a 68% yield (Faraday efficiency), which is 4 times greater than that of high-coordinated copper (HC-Cu).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!