A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interaction of Stabilized Alkylbenzene Sulfonate Surfactants on the Nanoscale with Water-Wet and Oil-Wet Carbonate Surfaces under High-Salinity and High-Temperature Conditions: A QCM-D Study. | LitMetric

Understanding the interactions of surfactants and wettability alteration of surfaces is important for many fields, including oil and gas recovery. This work utilizes the quartz crystal microbalance with dissipation to study the interaction of stabilized linear and branched alkylbenzene sulfonates (ABSs), among the most cost-efficient industrial surfactants, with water- and oil-wet calcite surfaces under high-salinity and high-temperature conditions. Confocal laser scanning microscopy is also used to study the effect of the type of ABS on their interaction with oil-wet calcite surfaces. Experiments demonstrate that vesicles made of linear and branched ABSs interact differently with both water- and oil-wet surfaces. Therefore, surfactant formulations made of ABSs for high-salinity applications can further be improved for advantageous wettability properties by varying the hydrophobic chain of the surfactants. When interacting with a water-wet surface, both types of vesicles adsorb onto the surface as is. Upon dilution, however, vesicles made of linear ABS stay adsorbed as is, and vesicles made of branched ABSs disassemble and produce a layered structure with altered wettability. Linear ABSs show greater efficiency in desorbing oil from the oil-wet calcite. The results of this study demonstrate an improved method for studying and understanding the interaction of surfactant formulations with water- and oil-wet surfaces. This approach could significantly benefit applications in which wettability alteration of surfaces is of great interest and facilitate the implementation of low-cost surfactants based on petroleum sulfonates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240813PMC
http://dx.doi.org/10.1021/acsomega.0c00478DOI Listing

Publication Analysis

Top Keywords

water- oil-wet
12
oil-wet calcite
12
interaction stabilized
8
surfaces high-salinity
8
high-salinity high-temperature
8
high-temperature conditions
8
wettability alteration
8
alteration surfaces
8
linear branched
8
calcite surfaces
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!