Mislocalization and abnormal expression of N-methyl-D-aspartate glutamate receptor (NMDAR) subunits is observed in several brain disorders and pathological conditions. Recently, we have shown that intraperitoneal injection of the gut neurotoxin p-cresol induces autism-like behavior and accelerates seizure reactions in healthy and epilepsy-prone rats, respectively. In this study, we evaluated the expression of GLUN2B and GLUN2A NMDAR subunits, and assessed the activity of cAMP-response element binding protein (CREB) and Rac1 in the hippocampi and nucleus accumbens of healthy and epilepsy-prone rats following p-cresol administration. We have found that subchronic intraperitoneal injection of p-cresol induced differential expression of GLUN2B and GLUN2A between the two brain regions, and altered the GLUN2B/GLUN2A ratio, in rats in both groups. Moreover, p-cresol impaired CREB phosphorylation in both brain structures and stimulated Rac activity in the hippocampus. These data indicate that p-cresol differently modulates the expression of NMDAR subunits in the nucleus accumbens and hippocampi of healthy and epilepsy-prone rats. We propose that these differences are due to the specificity of interactions between dopaminergic and glutamatergic pathways in these structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242059PMC
http://dx.doi.org/10.3934/Neuroscience.2020003DOI Listing

Publication Analysis

Top Keywords

expression glun2b
12
glun2b glun2a
12
nucleus accumbens
12
nmdar subunits
12
healthy epilepsy-prone
12
epilepsy-prone rats
12
gut neurotoxin
8
neurotoxin p-cresol
8
p-cresol induces
8
differential expression
8

Similar Publications

βPix is a guanine nucleotide exchange factor for the Rac1 and Cdc42 small GTPases, which play important roles in dendritic spine morphogenesis by modulating actin cytoskeleton organization. The formation and plasticity of the dendritic spines are essential for normal brain function. Among the alternatively spliced βPix isoforms, βPix-b and βPix-d are expressed specifically in neurons.

View Article and Find Full Text PDF

Mutations in the Transcription Factor 20 (TCF20) have been identified in patients with autism spectrum disorders (ASDs), intellectual disabilities (IDs), and other neurological issues. Recently, a new syndrome called TCF20-associated neurodevelopmental disorders (TAND) has been described, with specific clinical features. While TCF20's role in the neurogenesis of mouse embryos has been reported, little is known about its molecular function in neurons.

View Article and Find Full Text PDF

Melatonin attenuates BDE-209-caused spatial memory deficits in juvenile rats through NMDAR-CaMKⅡγ-mediated synapse-to-nucleus signaling.

Food Chem Toxicol

January 2025

Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China. Electronic address:

Flame retardant polybrominated diphenyl ethers (PBDEs) accumulate in human bodies through food and dust ingestion, and cause neurobehavioral deficits with obscure mechanism. We aimed to investigate NMDAR-CaMKⅡγ-mediated synapse-to-nuclear communication involved in BDE-209-induced cognitive impairment, and alleviation from exogenous melatonin. Decreased NMDAR subunits GluN2A and 2B, autophosphorylation of CaMKⅡα, and postsynaptic GluA1 trafficking were observed in the hippocampus of juvenile rats after maternal BDE-209 exposure.

View Article and Find Full Text PDF

The N-methyl-D-aspartate (NMDA) glutamate receptor is a major target of ethanol, and it is implicated in learning and memory formation, and other cognitive functions. Glycine acts as a co-agonist for this receptor. We examined whether Org24598, a selective inhibitor of glycine transporter1 (GlyT1), affects ethanol withdrawal-induced deficits in recognition memory (Novel Object Recognition (NOR) task) and spatial memory (Barnes Maze (BM) task) in rats, and whether the NMDA receptor glycine site participates in this phenomenon.

View Article and Find Full Text PDF

Background: Fluoroethylnormemantine (FENM), a new Memantine (MEM) derivative, prevented amyloid-β[25-35] peptide (Aβ)-induced neurotoxicity in mice, a pharmacological model of Alzheimer's disease (AD) with high predictive value for drug discovery. Here, as drug infusion is likely to better reflect drug bioavailability due to the interspecies pharmacokinetics variation, we analyzed the efficacy of FENM after chronic subcutaneous (SC) infusion, in comparison with IP injections in two AD mouse models, Aβ-injected mice and the transgenic APP/PSEN1 (APP/PS1) line.

Methods: In Aβ-treated mice, FENM was infused at 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!