Objectives: Response surface methodology coupled with statistically designed experiments has been found to be very useful in optimising multivariable processes. The aim of this study was to evaluate the influence of two independent variables, a ratio of permeation enhancers/antioxidants (transcutol and ethanolic extract of tetracarpidium conophorum EETC) and stirring rate, on the flux and permeation of gentamicin hydrogel.

Materials And Methods: A modification of free radical initial polymerization was used to formulate the gentamicin hydrogel. A 32 factorial CCD was then used to investigate the effect of independent variables of the permeation enhancer transcutol: EETC (X1), stirring speed (X2) via 14 formulation batches, which were evaluated for dependent variables flux (Y1) and amount of drug permeated after 12 hours (Y2) .

Results: The results of ANOVA performed to determine the fit of the models revealed that the models were statistically significant (p<0.05) and did not show lack of fit (R2>0.80). The regression equation generated for flux was Y1=19.35 - 25.82X1 - 0.044X2 + 0.0097X1X2 + 11.86X21 and for cumulative permeation of gentamicin in 12 hours Y2=315.50 - 189.67X1 + 0.28X2 -1.29X1X2 + 123.55X21. The validity of the statistical models used for predicting flux and drug permeation was confirmed by conducting three confirmation experimental runs at the identified optimum conditions. The results showed that there was no significant difference between the experimental results and those predicted by the statistical models.

Conclusion: The excellent correlation between the predicted and measured values shows the validity of statistical models (R2=0.95). An antioxidant and permeation enhancer has been used for the first time to investigate the influence on dependent variables. Optimization of gentamicin hydrogel using central composite statistical design is valid for the prediction of drug permeation and flux using variables in formulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227837PMC
http://dx.doi.org/10.4274/tjps.33042DOI Listing

Publication Analysis

Top Keywords

gentamicin hydrogel
12
optimization gentamicin
8
tetracarpidium conophorum
8
central composite
8
independent variables
8
eetc stirring
8
permeation gentamicin
8
permeation enhancer
8
dependent variables
8
validity statistical
8

Similar Publications

Investigation of Tannic Acid Crosslinked PVA/PEI-Based Hydrogels as Potential Wound Dressings with Self-Healing and High Antibacterial Properties.

Gels

October 2024

Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOENAMS R & D Group), Sakarya University, 54050 Sakarya, Türkiye.

Article Synopsis
  • - This study created hydrogels using PVA and PEI enhanced with tannic acid (TA) to treat burn wounds, and characterized these gels through various tests like SEM, FTIR, and antibacterial activity assessments.
  • - The addition of gentamicin (GEN) boosted the antibacterial effectiveness of the hydrogels, which also demonstrated strong hydrophilic traits, significant moisture retention, and high swelling capacity.
  • - The hydrogels showed promising potential for wound dressings, exhibiting improved mechanical strength and self-healing properties alongside effective drug release and swelling kinetics based on specific mathematical models.
View Article and Find Full Text PDF

A multifunctional hydrogel dressing loaded with antibiotics for healing of infected wound.

Int J Pharm

December 2024

School of Medicine, Sun Yat-sen University, Shenzhen 518107, China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:

Wound bacterial infections can significantly delay the healing process and even lead to fetal sepsis. There is a need for multifunctional dressings that possess antibacterial property, tissue adhesive property, self-healing capability, and biocompatibility to effectively treat bacteria-infected wound. In this study, we report a dual dynamically crosslinked hydrogel, OHA-PBA/PVA/Gen, which incorporates the antibiotic gentamicin (Gen) as a dynamic crosslinker.

View Article and Find Full Text PDF

Current methods for therapeutic drug monitoring (TDM) have a long turnaround time as they involve collecting patients' blood samples followed by transferring the samples to medical laboratories where sample processing and analysis are performed. To enable real-time and minimally invasive TDM, a microneedle (MN) biosensor to monitor the levels of two important antibiotics, vancomycin (VAN) and gentamicin (GEN) is developed. The MN biosensor is composed of a hydrogel MN (HMN), and an aptamer-functionalized flexible (Flex) electrode, named HMN-Flex.

View Article and Find Full Text PDF

Urinary tract infections (UTIs) represent the most prevalent type of outpatient infection, with significant adverse health and economic burdens. Current culture-based antibiotic susceptibility testing can take up to 72 h resulting in ineffective prescription of broad-spectrum antibiotics, poor clinical outcomes and development of further antibiotic resistance. We report an electrochemical lab-on-a-chip (LOC) for testing samples against seven clinically-relevant antibiotics.

View Article and Find Full Text PDF

Bone defects are commonly addressed with bone graft substitutes; however, surgical procedures, particularly for open and complex fractures, may pose a risk of infection. As such, a course of antibiotics combined with a drug carrier is often administered to mitigate potential exacerbations. This study involved the preparation and modification of emulsified (Em) crosslinking-gelatin (gel) microspheres (m-Em) to reduce their toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!