In many organisms, the ubiquitous second messenger cAMP is formed by at least one member of the adenylyl cyclase (AC) Class III. These ACs feature a conserved dimeric catalytic core architecture, either through homodimerization or through pseudo-heterodimerization of a tandem of two homologous catalytic domains, C1 and C2, on a single protein chain. The symmetric core features two active sites, but in the C1-C2 tandem one site degenerated into a regulatory center. Analyzing bacterial AC sequences, we identified a Pseudomonas aeruginosa AC-like protein (PaAClp) that shows a surprising swap of the catalytic domains, resulting in an unusual C2-C1 arrangement. We cloned and recombinantly produced PaAClp. The protein bound nucleotides but showed no AC or guanylyl cyclase activity, even in presence of a variety of stimulating ligands of other ACs. Solving the crystal structure of PaAClp revealed an overall structure resembling active class III ACs but pronounced shifts of essential catalytic residues and structural elements. The structure contains a tightly bound ATP, but in a binding mode not suitable for cAMP formation or ATP hydrolysis, suggesting that PaAClp acts as an ATP-binding protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsb.2020.107534DOI Listing

Publication Analysis

Top Keywords

class iii
12
crystal structure
8
atp-binding protein
8
pseudomonas aeruginosa
8
iii acs
8
catalytic domains
8
protein
5
structure class
4
iii adenylyl
4
adenylyl cyclase-like
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!