Efficient translational bypassing of a 50-nt non-coding gap in a phage T4 topoisomerase subunit gene (gp60) requires several recoding signals. Here we investigate the function of the mRNA stem-loop 5' of the take-off codon, as well as the importance of ribosome loading density on the mRNA for efficient bypassing. We show that polysomes are less efficient at mediating bypassing than monosomes, both in vitro and in vivo, due to their preventing formation of a stem-loop 5' of the take-off codon and allowing greater peptidyl-tRNA drop off. A ribosome profiling analysis of phage T4-infected Escherichia coli yielded protected mRNA fragments within the normal size range derived from ribosomes stalled at the take-off codon. However, ribosomes at this position also yielded some 53-nucleotide fragments, 16 longer. These were due to protection of the nucleotides that form the 5' stem-loop. NMR shows that the 5' stem-loop is highly dynamic. The importance of different nucleotides in the 5' stem-loop is revealed by mutagenesis studies. These data highlight the significance of the 5' stem-loop for the 50-nt bypassing and further enhance appreciation of relevance of the extent of ribosome loading for recoding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245268 | PMC |
http://dx.doi.org/10.1016/j.jmb.2020.05.010 | DOI Listing |
Nucleic Acids Res
June 2024
Max Planck Institute for Multidisciplinary Sciences, Department of Physical Biochemistry, 37077 Göttingen, Germany.
The ribosome can slide along mRNA without establishing codon-anticodon interactions. This movement can be regulated (programmed) by the elements encoded in the mRNA, as observed in bypassing of non-coding gap in gene 60 of bacteriophage T4, or occur spontaneously, such as during traversal by the 70S ribosome of the 3'UTRs or upon re-initiation on bacterial polycistronic genes. In this study, we investigate the kinetic mechanism underlying the programmed and spontaneous ribosome sliding.
View Article and Find Full Text PDFJ Mol Biol
July 2020
School of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork, T12 XF62, Ireland; School of Microbiology, University College Cork, Western Gateway Building, Western Road, Cork, T12 YT57, Ireland; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA. Electronic address:
Efficient translational bypassing of a 50-nt non-coding gap in a phage T4 topoisomerase subunit gene (gp60) requires several recoding signals. Here we investigate the function of the mRNA stem-loop 5' of the take-off codon, as well as the importance of ribosome loading density on the mRNA for efficient bypassing. We show that polysomes are less efficient at mediating bypassing than monosomes, both in vitro and in vivo, due to their preventing formation of a stem-loop 5' of the take-off codon and allowing greater peptidyl-tRNA drop off.
View Article and Find Full Text PDFSci Adv
June 2019
Max Planck Institute for Biophysical Chemistry, Department of Physical Biochemistry, 37077 Göttingen, Germany.
Translational bypassing is a recoding event during which ribosomes slide over a noncoding region of the messenger RNA (mRNA) to synthesize one protein from two discontinuous reading frames. Structures in the mRNA orchestrate forward movement of the ribosome, but what causes ribosomes to start sliding remains unclear. Here, we show that elongation factor G (EF-G) triggers ribosome take-off by a pseudotranslocation event using a small mRNA stem-loop as an A-site transfer RNA mimic and requires hydrolysis of about two molecules of guanosine 5'-triphosphate per nucleotide of the noncoding gap.
View Article and Find Full Text PDFSci Adv
June 2017
Structural Biology Unit, CIC bioGUNE, 48160 Derio, Spain.
Bypassing is a recoding event that leads to the translation of two distal open reading frames into a single polypeptide chain. We present the structure of a translating ribosome stalled at the bypassing take-off site of of bacteriophage T4. The nascent peptide in the exit tunnel anchors the P-site peptidyl-tRNA to the ribosome and locks an inactive conformation of the peptidyl transferase center (PTC).
View Article and Find Full Text PDFCell
November 2015
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA. Electronic address:
Nearly half of the ribosomes translating a particular bacteriophage T4 mRNA bypass a region of 50 nt, resuming translation 3' of this gap. How this large-scale, specific hop occurs and what determines whether a ribosome bypasses remain unclear. We apply single-molecule fluorescence with zero-mode waveguides to track individual Escherichia coli ribosomes during translation of T4's gene 60 mRNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!