AI Article Synopsis

  • A diverse range of fungi was found on Kueishan Island, Taiwan, but their ability to thrive in extreme marine environments remains unclear.
  • The study examined the growth of ten fungi under varying salinity, temperature, and pH conditions, categorizing their responses into three groups based on their adaptability.
  • A. terreus NTOU4989 was notable for its growth in extreme conditions and showed significant gene expression changes suggesting molecular adaptations to high temperature and acidic environments.

Article Abstract

A high diversity of fungi was discovered on various substrates collected at the marine shallow-water Kueishan Island Hydrothermal Vent Field, Taiwan, using culture and metabarcoding methods but whether these fungi can grow and play an active role in such an extreme environment is unknown. We investigated the combined effects of different salinity, temperature and pH on growth of ten fungi (in the genera Aspergillus, Penicillium, Fodinomyces, Microascus, Trichoderma, Verticillium) isolated from the sediment and the vent crab Xenograpsus testudinatus. The growth responses of the tested fungi could be referred to three groups: (1) wide pH, salinity and temperature ranges, (2) salinity-dependent and temperature-sensitive, and (3) temperature-tolerant. Aspergillus terreus NTOU4989 was the only fungus which showed growth at 45 °C, pH 3 and 30 ‰ salinity, and might be active near the vents. We also carried out a transcriptome analysis to understand the molecular adaptations of A. terreus NTOU4989 under these extreme conditions. Data revealed that stress-related genes were differentially expressed at high temperature (45 °C); for instance, mannitol biosynthetic genes were up-regulated while glutathione S-transferase and amino acid oxidase genes down-regulated in response to high temperature. On the other hand, hydrogen ion transmembrane transport genes and phenylalanine ammonia lyase were up-regulated while pH-response transcription factor was down-regulated at pH 3, a relative acidic environment. However, genes related to salt tolerance, such as glycerol lipid metabolism and mitogen-activated protein kinase, were up-regulated in both conditions, possibly related to maintaining water homeostasis. The results of this study revealed the genetic evidence of adaptation in A. terreus NTOU4989 to changes of environmental conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250430PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233621PLOS

Publication Analysis

Top Keywords

terreus ntou4989
16
combined effects
8
transcriptome analysis
8
aspergillus terreus
8
ntou4989 extreme
8
extreme conditions
8
kueishan island
8
island hydrothermal
8
hydrothermal vent
8
vent field
8

Similar Publications

Article Synopsis
  • A diverse range of fungi was found on Kueishan Island, Taiwan, but their ability to thrive in extreme marine environments remains unclear.
  • The study examined the growth of ten fungi under varying salinity, temperature, and pH conditions, categorizing their responses into three groups based on their adaptability.
  • A. terreus NTOU4989 was notable for its growth in extreme conditions and showed significant gene expression changes suggesting molecular adaptations to high temperature and acidic environments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!