Decision making relies on adequately evaluating the consequences of actions on the basis of past experience and the current physiological state. A key role in this process is played by the basal ganglia, where neural activity and plasticity are modulated by dopaminergic input from the midbrain. Internal physiological factors, such as hunger, scale signals encoded by dopaminergic neurons and thus they alter the motivation for taking actions and learning. However, to our knowledge, no formal mathematical formulation exists for how a physiological state affects learning and action selection in the basal ganglia. We developed a framework for modelling the effect of motivation on choice and learning. The framework defines the motivation to obtain a particular resource as the difference between the desired and the current level of this resource, and proposes how the utility of reinforcements depends on the motivation. To account for dopaminergic activity previously recorded in different physiological states, the paper argues that the prediction error encoded in the dopaminergic activity needs to be redefined as the difference between utility and expected utility, which depends on both the objective reinforcement and the motivation. We also demonstrate a possible mechanism by which the evaluation and learning of utility of actions can be implemented in the basal ganglia network. The presented theory brings together models of learning in the basal ganglia with the incentive salience theory in a single simple framework, and it provides a mechanistic insight into how decision processes and learning in the basal ganglia are modulated by the motivation. Moreover, this theory is also consistent with data on neural underpinnings of overeating and obesity, and makes further experimental predictions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274475 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1007465 | DOI Listing |
Brain Struct Funct
January 2025
Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
In this study, we analyzed the spatio-temporal pattern of expression of specific transcription factors (PITX2, FOXA1, BARHL1, FOXP1, FOXP2) in the human fetal subthalamic nucleus and its neighboring structures from 11 postconceptional weeks (PCW) to 3 postnatal months. We found that all analyzed transcription factors are expressed already during the early fetal period (at 11 PCW). Both FOXP1- and FOXP2-immunoreactive cells were found in the subthalamic nucleus as well as in the striatum, thalamus, reticular nucleus, but not in the zona incerta.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Case Western Reserve University, Cleveland, Ohio, USA.
Movement disorders such as Parkinson's disease (PD) and cervical dystonia (CD) are associated with abnormal neuronal activity in the globus pallidus internus (GPi). Reduced firing rate and presence of spiking bursts are typical for CD, whereas PD is characterized by high frequency tonic activity. This research aims to identify the most important pallidal spiking parameters to classify these conditions.
View Article and Find Full Text PDFBackground: Obsessive-compulsive disorder (OCD) may develop following brain lesions, but lesion distribution and connectivity patterns are unknown.
Methods: OCD-associated lesions, identified from systematic literature search, were traced on common brain space and compared to control lesions (N=608). Topography was analyzed using brain atlases, and lesion location networks computed using normative functional connectivity (N=1000).
Front Neurol
January 2025
Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China.
Walking ability is essential for human survival and health. Its basic rhythm is mainly generated by the central pattern generator of the spinal cord. The rhythmic stimulation of music to the auditory center affects the cerebral cortex and other higher nerve centers, and acts on the central pattern generator.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tübingen, Germany.
Objective: Epilepsy is considered as a network disorder of interacting brain regions. The propagation of local epileptic activity from the seizure onset zone (SOZ) along neuronal networks determines the semiology of seizures. However, in highly interconnected brain regions such as the insula, the association between the SOZ and semiology is blurred necessitating invasive stereoelectroencephalography (SEEG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!