The mechanisms underlying atrial-selective prolongation of effective refractory period (ERP) and suppression of atrial fibrillation (AF) by NS8593 and UCL1684, small conductance calcium-activated potassium (SK) channel blockers, are poorly defined. The purpose of the study was to confirm the effectiveness of these agents to suppress AF and to probe the underlying mechanisms. Transmembrane action potentials and pseudoelectrocardiograms were recorded from canine isolated coronary-perfused canine atrial and ventricular wedge preparations. Patch clamp techniques were used to record sodium channel current (INa) in atrial and ventricular myocytes and human embryonic kidney cells. In both atria and ventricles, NS8593 (3-10 µM) and UCL1684 (0.5 µM) did not significantly alter action potential duration, suggesting little to no SK channel inhibition. Both agents caused atrial-selective: (1) prolongation of ERP secondary to development of postrepolarization refractoriness, (2) reduction of Vmax, and (3) increase of diastolic threshold of excitation (all are sodium-mediated parameters). NS8593 and UCL1684 significantly reduced INa density in human embryonic kidney cells as well as in atrial but not in ventricular myocytes at physiologically relevant holding potentials. NS8593 caused a shift of steady-state inactivation to negative potentials in atrial but not ventricular cells. NS8593 and UCL1684 prevented induction of acetylcholine-mediated AF in 6/6 and 8/8 preparations, respectively. This anti-AF effect was associated with strong rate-dependent depression of excitability. The SK channel blockers, NS8593 and UCL1684, are effective in preventing the development of AF due to potent atrial-selective inhibition of INa, causing atrial-selective prolongation of ERP secondary to induction of postrepolarization refractoriness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416459 | PMC |
http://dx.doi.org/10.1097/FJC.0000000000000855 | DOI Listing |
The mechanisms underlying atrial-selective prolongation of effective refractory period (ERP) and suppression of atrial fibrillation (AF) by NS8593 and UCL1684, small conductance calcium-activated potassium (SK) channel blockers, are poorly defined. The purpose of the study was to confirm the effectiveness of these agents to suppress AF and to probe the underlying mechanisms. Transmembrane action potentials and pseudoelectrocardiograms were recorded from canine isolated coronary-perfused canine atrial and ventricular wedge preparations.
View Article and Find Full Text PDFBiochim Biophys Acta
February 2013
Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.
We tested if small conductance, Ca(2+)-sensitive K(+) channels (SK(Ca)) precondition hearts against ischemia reperfusion (IR) injury by improving mitochondrial (m) bioenergetics, if O(2)-derived free radicals are required to initiate protection via SK(Ca) channels, and, importantly, if SK(Ca) channels are present in cardiac cell inner mitochondrial membrane (IMM). NADH and FAD, superoxide (O(2)(-)), and m[Ca(2+)] were measured in guinea pig isolated hearts by fluorescence spectrophotometry. SK(Ca) and IK(Ca) channel opener DCEBIO (DCEB) was given for 10 min and ended 20 min before IR.
View Article and Find Full Text PDFHypertension
June 2011
NeuroSearch A/S, Pederstrupvej 93, 2750 Ballerup, Denmark.
We have shown previously that inhibition of small conductance Ca(2+)-activated K(+) (SK) channels is antiarrhythmic in models of acutely induced atrial fibrillation (AF). These models, however, do not take into account that AF derives from a wide range of predisposing factors, the most prevalent being hypertension. In this study we assessed the effects of two different SK channel inhibitors, NS8593 and UCL1684, in aging, spontaneously hypertensive rats to examine their antiarrhythmic properties in a setting of hypertension-induced atrial remodeling.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
June 2011
Membrane Protein Physiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
Atrial fibrillation (AF) is associated with increased morbidity and is in addition the most prevalent cardiac arrhythmia. Compounds used in pharmacological treatment has traditionally been divided into Na(+) channel inhibitors, β-blockers, K(+) channel inhibitors, and Ca(2+) channel inhibitors, whereas newer multichannel blockers such as amiodarone and ranolazine have been introduced later. This study was devoted to the evaluation of an acute pacing-induced in vivo model of AF in rats.
View Article and Find Full Text PDFCirc Arrhythm Electrophysiol
August 2010
NeuroSearch A/S, Pederstrupvej 93, Ballerup, Denmark.
Background: Recently, evidence has emerged that small-conductance Ca(2+)-activated K(+) (SK) channels are predominantly expressed in the atria in a number of species including human. In rat, guinea pig, and rabbit ex vivo and in vivo models of atrial fibrillation (AF), we used 3 different SK channel inhibitors, UCL1684, N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA), and NS8593, to assess the hypothesis that pharmacological inhibition of SK channels is antiarrhythmic.
Methods And Results: In isolated, perfused guinea pig hearts, AF could be induced in all control hearts (n=7) with a combination of 1 micromol/L acetylcholine combined with electric stimulation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!