A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Isoflurane Exposure in Juvenile Caenorhabditis elegans Causes Persistent Changes in Neuron Dynamics. | LitMetric

Isoflurane Exposure in Juvenile Caenorhabditis elegans Causes Persistent Changes in Neuron Dynamics.

Anesthesiology

From the Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts (G.S.W., C.V.G., C.W.C.) the Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts (C.W.C.).

Published: September 2020

Background: Animal studies demonstrate that anesthetic exposure during neurodevelopment can lead to persistent behavioral impairment. The changes in neuronal function underlying these effects are incompletely understood. Caenorhabditis elegans is well suited for functional imaging of postanesthetic effects on neuronal activity. This study aimed to examine such effects within the neurocircuitry underlying C. elegans locomotion.

Methods: C. elegans were exposed to 8% isoflurane for 3 h during the neurodevelopmentally critical L1 larval stage. Locomotion was assessed during early and late adulthood. Spontaneous activity was measured within the locomotion command interneuron circuitry using confocal and light-sheet microscopy of the calcium-sensitive fluorophore GCaMP6s.

Results: C. elegans exposed to isoflurane demonstrated attenuation in spontaneous reversal behavior, persisting throughout the animal's lifespan (reversals/min: untreated early adulthood, 1.14 ± 0.42, vs. isoflurane-exposed early adulthood, 0.83 ± 0.55; untreated late adulthood, 1.75 ± 0.64, vs. isoflurane-exposed late adulthood, 1.14 ± 0.68; P = 0.001 and 0.006, respectively; n > 50 animal tracks/condition). Likewise, isoflurane exposure altered activity dynamics in the command interneuron AVA, which mediates crawling reversals. The rate at which AVA transitions between activity states was found to be increased. These anesthetic-induced effects were more pronounced with age (off-to-on activity state transition time (s): untreated early adulthood, 2.5 ± 1.2, vs. isoflurane-exposed early adulthood, 1.9 ± 1.3; untreated late adulthood, 4.6 ± 3.0, vs. isoflurane-exposed late adulthood, 3.0 ± 2.4; P = 0.028 and 0.008, respectively; n > 35 traces acquired from more than 15 animals/condition). Comparable effects were observed throughout the command interneuron circuitry, indicating that isoflurane exposure alters transition rates between behavioral crawling states of the system overall. These effects were modulated by loss-of-function mutations within the FoxO transcription factor daf-16 and by rapamycin-mediated mechanistic Target of Rapamycin (mTOR) inhibition.

Conclusions: Altered locomotive behavior and activity dynamics indicate a persistent effect on interneuron dynamics and circuit function in C. elegansafter developmental exposure to isoflurane. These effects are modulated by a loss of daf-16 or mTOR activity, consistent with a pathologic activation of stress-response pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429306PMC
http://dx.doi.org/10.1097/ALN.0000000000003335DOI Listing

Publication Analysis

Top Keywords

late adulthood
20
early adulthood
16
isoflurane exposure
12
command interneuron
12
adulthood
9
caenorhabditis elegans
8
elegans exposed
8
exposed isoflurane
8
interneuron circuitry
8
untreated early
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!