Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare and life-threatening haematological emergency. Although therapeutic plasma exchange together with corticosteroids achieve successful outcomes, a considerable number of patients remain refractory to this treatment and require early initiation of intensive therapy. However, a method for the early identification of refractory iTTP is not available. To develop and validate a model for predicting the probability of refractory iTTP, a cohort of 265 consecutive iTTP patients from 17 large medical centres was retrospectively identified. The derivation cohort included 94 patients from 11 medical centres. For the validation cohort, we included 40 patients from the other six medical centres using geographical validation. An easy-to-use risk score system was generated, and its performance was assessed using internal and external validation cohorts. In the multivariable logistic analysis of the derivation cohort, three candidate predictors were entered into the final prediction model: age, haemoglobin and creatinine. The prediction model had an area under the curve of 0.886 (95% CI: 0.679-0.974) in the internal validation cohort and 0.862 (95% CI: 0.625-0.999) in the external validation cohort. The calibration plots showed a high agreement between the predicted and observed outcomes. In conclusion, we developed and validated a highly accurate prediction model for the early identification of refractory iTTP. It has the potential to guide tailored therapy and is a step towards more personalized medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1111/bjh.16767DOI Listing

Publication Analysis

Top Keywords

prediction model
16
early identification
12
identification refractory
12
refractory ittp
12
medical centres
12
validation cohort
12
thrombotic thrombocytopenic
8
thrombocytopenic purpura
8
derivation cohort
8
cohort included
8

Similar Publications

Albumin and γ-globulin concentrations in subcutaneous adipose tissues (SAT) have been quantified by multivariate regression based on admittance relaxation time distribution (mraRTD) under the fluctuated background of sodium electrolyte concentration. The mraRTD formulates P = Ac + Ξ (P: peak matrix of distribution function magnitude ɣP and frequency τP, c: concentration matrix of albumin cAlb, γ-globulin Gloc, and sodium electrolyte Nac, A: coefficient matrix of a multivariate regression model, and Ξ: error matrix). The mraRTD is implemented by two processes which are: 1) the training process of A through the maximum likelihood estimation of P and 2) the quantification process of cAlb, Gloc, and Nac through the model prediction.

View Article and Find Full Text PDF

Background: Delayed cerebral ischemia (DCI) is a primary contributor to death after subarachnoid hemorrhage (SAH), with significant incidence. Therefore, early determination of the risk of DCI is an urgent need. Machine learning (ML) has received much attention in clinical practice.

View Article and Find Full Text PDF

Background: Depression significantly impacts an individual's thoughts, emotions, behaviors, and moods; this prevalent mental health condition affects millions globally. Traditional approaches to detecting and treating depression rely on questionnaires and personal interviews, which can be time consuming and potentially inefficient. As social media has permanently shifted the pattern of our daily communications, social media postings can offer new perspectives in understanding mental illness in individuals because they provide an unbiased exploration of their language use and behavioral patterns.

View Article and Find Full Text PDF

Objectives: The inclusion of social drivers of health (SDOH) into predictive algorithms of health outcomes has potential for improving algorithm interpretation, performance, generalizability, and transportability. However, there are limitations in the availability, understanding, and quality of SDOH variables, as well as a lack of guidance on how to incorporate them into algorithms when appropriate to do so. As such, few published algorithms include SDOH, and there is substantial methodological variability among those that do.

View Article and Find Full Text PDF

Economic losses in cattle farms are frequently associated with failed pregnancies. Some studies found that the transcriptomic profiles of blood and endometrial tissues in cattle with varying pregnancy outcomes display discrepancies even before artificial insemination (AI) or embryo transfer (ET). In the study, 330 samples from seven distinct sources and two tissue types were integrated and divided into two groups based on the ability to establish and maintain pregnancy after AI or ET: P (pregnant) and NP (nonpregnant).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!