High load drug release systems based on carbon porous nanocapsule carriers. Ibuprofen case study.

J Mater Chem B

Department of Chemical Engineering, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

Published: June 2020

This work shows the application of carbon nanocapsules as carriers for sodium ibuprofen release. Hard templating was used to prepare spherical carbon nanocapsules (mean diameter and thick shell of 690 and 70 nm, respectively), exhibiting both micro and mesoporosity. For comparison purposes, a microporous commercial activated carbon and a home-made mesoporous CMK-3 were also studied. All carbons showed similar drug uptake, although microporous commercial carbon and nanocapsules showed higher uptake at low equilibrium concentration due to higher adsorption potential in micropores. Higher and faster release of sodium ibuprofen was observed for carbon nanocapsules at pH 1.8 and 7.4 for a starting load ca. 250 mg g-1. Subsequent loading of carbon nanocapsules by successive evaporation cycles led to a remarkable load of ca. 6010 mg g-1 thanks to sodium ibuprofen filling the internal void volume. In spite of the very high load a fast release was observed at pH 7.4, reaching a release of ca. 100% of the initial sodium ibuprofen load. However, a much slower and lower release was observed at pH 1.8. Thus, the system developed has interesting features for oral drug administration thanks to low toxicity of porous carbon, low release in gastric medium and important release in intestinal medium.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0tb00329hDOI Listing

Publication Analysis

Top Keywords

carbon nanocapsules
20
sodium ibuprofen
16
high load
8
release
8
carbon
8
microporous commercial
8
release observed
8
ibuprofen
5
nanocapsules
5
load drug
4

Similar Publications

Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive cognitive and physical impairment. Neuroinflammation is related to AD, and the misfolding and aggregation of amyloid protein in the brain creates an inflammatory microenvironment. Microglia are the predominant contributors to neuroinflammation, and abnormal activation of microglia induces the release of a large amount of inflammatory factors, promotes neuronal apoptosis, and leads to cognitive impairment.

View Article and Find Full Text PDF

Liquid-core nanocapsules (NCs) coated with amphiphilic hyaluronic acid (AmHA) have been proposed for the preparation of drug and food formulations. Herein, we focused on the use of ultrasound techniques to (i) optimize the polysaccharide chain length with respect to the properties of NCs stabilized with AmHAs and (ii) form oil-core nanocapsules with a coating composed of AmHAs. The results indicate that sonication is a convenient and effective method that allows for a controlled reduction in HA molecular weight.

View Article and Find Full Text PDF

Curcumin Nanocapsules based on carbon dots for photodynamic sterilization towards Listeria monocytogenes and Staphylococcus aureus.

Food Chem

November 2024

School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, PR China; Dongguan Key Laboratory of Prepared Dishes Innovative Development & Quality Control, Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes, Dongguan 523808, PR China. Electronic address:

Curcumin (Cur) as a natural food additive and photosensitizer has been widely applied on photodynamic sterilization and preservation for food, but the poor aqueous solubility and light stability restrict its extensive application. In this study, we report a Cur nanocapsules (Cur-CDs) made by carbon dots (CDs). Attributing to the hydrogen bonds formed between Cur and CDs, Cur-CDs exhibits excellent Cur aqueous solubility each to 9286.

View Article and Find Full Text PDF

Oil-core nanocapsules (NCs, also known as nanoemulsions) are of great interest due to their application as efficient carriers of various lipophilic bioactives, such as drugs. Here, we reported for the first time the preparation and characterization of NCs consisting of chondroitin sulfate (CS)-based shells and liquid oil cores. For this purpose, two amphiphilic CS derivatives (AmCSs) were obtained by grafting the polysaccharide chain with octadecyl or oleyl groups.

View Article and Find Full Text PDF

In the present work, molecular dynamics simulation is applied to evaluate the drug carrier efficiency of graphene oxide nanoflake (GONF) for loading of Selinexor (SXR) drug as well as the drug delivery by 2D material through the membrane in aqueous solution. In addition, to investigate the adsorption and penetration of drug-nanocarrier complex into the cell membrane, well-tempered metadynamics simulations and steered molecular dynamics (SMD) simulations were performed. Based on the obtained results, it is evident that intermolecular hydrogen bonds (HBs) and π-π interactions play a significant role in expediting the interaction between drug molecules and the graphene oxide (GO) nanosheet, ultimately resulting in the formation of a stable SXR-GO complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!