Combustion of liquid fuels containing sulfur compounds is highly unfavorable due to the adverse effects caused by the resultant SO emission. Consequently, catalytic and adsorptive materials having the capacity to eliminate the sulfur compounds from liquid fuels are very attractive. Hexagonal boron nitride (BN), with its interesting chemical and physical properties, finds applications in diverse fields, especially in energy and environmental applications. Recently, BN and BN-based materials have gained significant interest in emerging desulfurization processes such as oxidative desulfurization and adsorptive desulfurization. In this review, BN and BN-based materials are elaborately discussed in the context of their use in various desulfurization techniques. A brief description about the different desulfurization processes is provided at the outset. The relationship between the characteristics (the defects, morphology, porosity and surface area) of BN and desulfurization efficiency is also summarized. Furthermore, the mechanistic insights regarding the action of BN materials in the desulfurization processes are discussed. With this review, the synthetic strategies for designing the novel BN-based catalysts/adsorbents for the effective desulfurization of liquid fuels can be grasped.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202000479 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!