Innovations in foraging behavior can drive morphological diversity by opening up new ways of interacting with the environment, or limit diversity through functional constraints associated with different foraging behaviors. Several classic examples of adaptive radiations in birds show increased variation in ecologically relevant traits. However, these cases primarily focus on geographically narrow adaptive radiations, consider only morphological evolution without a biomechanical approach, or do not investigate tradeoffs with other non-focal traits that might be affected by use of different foraging habitats. Here, we use X-ray microcomputed tomography, biomechanical modeling, and multivariate comparative methods to explore the interplay between foraging behavior and cranial morphology in kingfishers, a global radiation of birds with variable beaks and foraging behaviors, including the archetypal plunge-dive into water. Our results quantify covariation between the shape of the outer keratin covering (rhamphotheca) and the inner skeletal core of the beak, as well as highlight distinct patterns of morphospace occupation for different foraging behaviors and considerable rate variation among these skull regions. We anticipate these findings will have implications for inferring beak shapes in fossil taxa and inform biomimetic design of novel impact-reducing structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/evo.14024 | DOI Listing |
Am J Primatol
January 2025
Primate Behavioral Ecology Lab, Instituto de Neuro-etología, Universidad Veracruzana, Xalapa, México.
Parasitism, a widespread nutrient acquisition strategy among animals, results from a long evolutionary history where one species derives its metabolic needs from another. Parasites can significantly reduce host fitness, affecting reproduction, growth, and survivability. Vertebrate hosts exhibit defensive strategies against parasites, including "sickness behaviors" such as lethargy and self-grooming to remove ectoparasites.
View Article and Find Full Text PDFIntegr Zool
January 2025
Department of Entomology, University of Georgia, Tifton, Georgia, USA.
Selection on body size tends to favor larger males that outcompete smaller males to mate with females, and larger, more fecund females. For many web-building spiders in the Nephilidae family, reproductive success increases with body size, which in turn, is related to diet. The diet of female spiders may overlap with males who share her web, but diet patterns could depend on size if certain males have better access to prey ensnared in the web.
View Article and Find Full Text PDFCurr Biol
January 2025
Norwegian Institute for Nature Research (NINA), Trondheim 7034, Norway.
Understanding the movements of highly mobile animals is challenging because of the many factors they must consider in their decision-making. Many seabirds, for example, are adapted to use winds to travel long distances at low energetic cost but also potentially benefit from targeting specific foraging hotspots. To investigate how an animal makes foraging decisions, given the inevitable trade-off between these factors, we tracked over 600 foraging trips of breeding Manx shearwaters (Puffinus puffinus; N = 218 individuals) using GPS accelerometers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3TA, United Kingdom.
Daily life for humans and other animals requires switching between periods of threat- and reward-oriented behavior. We investigated neural activity associated with spontaneous switching, in a naturalistic task, between foraging for rewards and seeking information about potential threats with 7T fMRI in healthy humans. Switching was driven by estimates of likelihood of threat and reward.
View Article and Find Full Text PDFFront Zool
January 2025
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, People's Republic of China.
Background: Odorant binding proteins (OBPs) initiate the process of odorant perception. Numerous investigations have demonstrated that OBPs bind a broad variety of chemicals and are more likely to carry pheromones or odor molecules with high binding affinities. However, few studies have investigated its effects on insect behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!