Myosins in the Nucleus.

Adv Exp Med Biol

Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.

Published: August 2020

Although originally characterized as a cytoplasmic protein, myosin of various classes also performs key functions in the nucleus. We review the data concerning the nuclear localization, mechanism of entry, and functional interactions of myosin I, II, V, VI, X, XVI, and XVIII. To date, the first-characterized "nuclear myosin I" (or, in the prevailing nomenclature, myosin IC isoform B) remains the best-studied nuclear myosin, although results are rapidly accumulating that illuminate the roles of other myosin classes, and an outline of a unified picture of myosin functions in the nucleus is beginning to emerge. Reflecting the state of knowledge in this field, the review concentrates on the mechanisms mediating and regulating import of myosin IC into the nucleus and its role, alongside myosin V and VI, in transcription. Myosin functions in chromatin dynamics, epigenetic mechanisms, intranuclear motility, and nuclear export of RNA and protein are also addressed. Partners and regulators of myosin, such as nuclear actin, kinases, and phosphatases are briefly covered. Problem areas are identified and testable hypotheses are offered with an aim of focusing the research efforts on overcoming the gaps on the way toward a systems-level understanding of processes involving nuclear myosins and their place in cell physiology as a whole.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-030-38062-5_10DOI Listing

Publication Analysis

Top Keywords

myosin
11
myosin classes
8
functions nucleus
8
myosin functions
8
nuclear
5
myosins nucleus
4
nucleus originally
4
originally characterized
4
characterized cytoplasmic
4
cytoplasmic protein
4

Similar Publications

Stigmasterol from Prunella vulgaris L. Alleviates LPS-induced mammary gland injury by inhibiting inflammation and ferroptosis.

Phytomedicine

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China. Electronic address:

Background: Dairy mastitis, a prevalent condition affecting dairy cattle, represents a significant challenge to both animal welfare and the quality of dairy products. However, current treatment options remain limited. Stigmasterol (ST) is a bioactive component of Prunella vulgaris L.

View Article and Find Full Text PDF

[Hypertrophic cardiomyopathy with left ventricular excessive trabeculation resulting from MYBPC3 gene mutation: a case report].

Zhonghua Xin Xue Guan Bing Za Zhi

January 2025

Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100037, China.

View Article and Find Full Text PDF

Objective: To estimate the resource use of patients with obstructive hypertrophic cardiomyopathy (HCM), stratified by New York Heart Association (NYHA) class, in the English and Northern Irish healthcare systems via expert elicitation.

Design: Modified Delphi framework methodology.

Setting: UK HCM secondary care centres (n=24).

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Effect of cardiomyocyte-specific lipid phosphate phosphatase 3 overexpression on high-fat diet-induced cardiometabolic dysfunction in mice.

Am J Physiol Heart Circ Physiol

January 2025

Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, 355 Campus Ring Road, Saint John, New Brunswick, E2L 4L5, Canada.

Lipid phosphate phosphatase 3 (LPP3) is a membrane-bound enzyme that hydrolyzes lipid phosphates including the bioactive lipid, lysophosphatidic acid (LPA). Elevated circulating LPA production and cellular LPA signaling are implicated in obesity-induced metabolic and cardiac dysfunction. Deletion of LPP3 in the cardiomyocyte increases circulating LPA levels and causes heart failure and mitochondrial dysfunction in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!