Purpose: Clinical and animal studies indicate frequent small micro-arousals (McA) fragment sleep leading to health complications. McA in humans is defined by changes in EEG and EMG during sleep. Complex EEG recordings during the night are usually required to detect McA-limiting large-scale, prospective studies on McA and their impact on health. Even with the use of EEG, reliably measuring McA can be difficult because of low inter-scorer reliability. Surrogate measures in place of EEG could provide easier and possibly more reliable measures of McA. These have usually involved measuring heart rate and arm movements. They have not provided a reliable measurement of McA in part because they cannot adequately detect short wake periods and periods of wake after sleep onset. Leg movements in sleep (LMS) offer an attractive alternative. LMS and cortical arousal, including McA, commonly occur together. Not all McA occur with LMS, but the most clinically significant ones may be those with LMS [1]. Conversely, most LMS do not occur with McA, but LMS vary considerably in their characteristics. Evaluating LMS characteristics may serve to identify the LMS associated with McA. The use of standard machine learning approaches seems appropriate for this particular task. This proof-of-concept pilot project aims to determine the feasibility of detecting McA from machine learning methods analyzing movement characteristics of the LMS.

Methods: This study uses a small but diverse group of subjects to provide a large variety of LMS and McA adequate for supervised machine learning. LMS measurements were obtained from a new advanced technology in the RestEaZe™ leg band that integrates gyroscope, accelerometer, and capacitance measurements. Eleven RestEaZe™ LMS features were selected for logistic regression analyses.

Results: With the optimum logit probability threshold selected, the system accurately detected 76% of the McA matching the accuracy of trained visual inter-scorer reliability (71-76%). The classifier provided a sensitivity of 76% and a specificity of 86% for the identification of the LMS with McA. The classifier identified regions in sleep with high versus low rates of LMS with McA, indicating possible areas of fragmented versus undisturbed restful sleep.

Conclusion: These pilot data are encouraging as a preliminary proof-of-concept for using advanced machine learning analyses of LMS to identify sleep fragmented by McA.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11325-020-02100-6DOI Listing

Publication Analysis

Top Keywords

machine learning
20
mca
16
lms
15
lms mca
12
learning analyses
8
leg movements
8
movements sleep
8
sleep lms
8
lms cortical
8
inter-scorer reliability
8

Similar Publications

Microfluidic and Computational Tools for Neurodegeneration Studies.

Annu Rev Chem Biomol Eng

January 2025

1Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; email:

Understanding the molecular, cellular, and physiological components of neurodegenerative diseases (NDs) is paramount for developing accurate diagnostics and efficacious therapies. However, the complexity of ND pathology and the limitations associated with conventional analytical methods undermine research. Fortunately, microfluidic technology can facilitate discoveries through improved biomarker quantification, brain organoid culture, and small animal model manipulation.

View Article and Find Full Text PDF

Background: An accurate knowledge of a patient's risk of cord-level intraoperative neuromonitoring (IONM) data loss is important for an informed decision-making process prior to deformity correction, but no prediction tool currently exists.

Methods: A total of 1,106 patients with spinal deformity and 205 perioperative variables were included. A stepwise machine-learning (ML) approach using random forest (RF) analysis and multivariable logistic regression was performed.

View Article and Find Full Text PDF

In the production sector, the usefulness of predictive systems as a tool for management and decision-making is well known. In the agricultural sector, a correct economic balance of the farm depends on making the right decisions. For this purpose, having information in advance on crop yields is an extraordinary help.

View Article and Find Full Text PDF

Cognitive Radio (CR) technology enables wireless devices to learn about their surrounding spectrum environment through sensing capabilities, thereby facilitating efficient spectrum utilization without interfering with the normal operation of licensed users. This study aims to enhance spectrum sensing in multi-user cooperative cognitive radio systems by leveraging a hybrid model that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. A novel multi-user cooperative spectrum sensing model is developed, utilizing CNN's local feature extraction capability and LSTM's advantage in handling sequential data to optimize sensing accuracy and efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!