We reported a large Chinese family diagnosed with autosomal dominant tubulointerstitial kidney disease caused by MUC1 mutation (ADTKD-MUC1). Cytosine duplication within a string of 7 cytosines in the variable-number tandem repeats (VNTR) region of the MUC1 gene was detected by long-read single-molecule real-time (SMRT) sequencing. MUC1 frameshift protein (MUC1fs) was found to be expressed in renal tubules and urinary exfoliated cells by pathological examination. The family, which consisted of 5 generations including 137 individuals, was followed for 5 years. Genetic testing was performed in thirty-four individuals, 17 of whom carried MUC1 mutations. The ADTKD-MUC1-affected individuals had an elevated incidence of hyperuricaemia without gout attack. Within five years, higher baseline levels of urinary α1-microglobulin were detected in affected individuals with rapidly progressing renal failure than in affected individuals with stable renal function, and the increases manifested even before increases in serum creatinine. This study demonstrates that SMRT sequencing is an effective method for the identification of MUC1 mutations. The pathological examination of MUC1fs expression in renal tissue and urinary exfoliated cells can contribute to early screening of family members suspected to be affected. It is suggested that affected individuals with elevated urinary α1-microglobulin levels should be closely monitored for renal function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248079PMC
http://dx.doi.org/10.1038/s41598-020-65491-2DOI Listing

Publication Analysis

Top Keywords

smrt sequencing
12
effective method
8
chinese family
8
urinary exfoliated
8
exfoliated cells
8
pathological examination
8
muc1 mutations
8
individuals elevated
8
urinary α1-microglobulin
8
renal function
8

Similar Publications

Comprehensive analysis of the multi-rings mitochondrial genome of Populus tomentosa.

BMC Genomics

January 2025

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.

Background: Populus tomentosa, known as Chinese white poplar, is indigenous and distributed across large areas of China, where it plays multiple important roles in forestry, agriculture, conservation, and urban horticulture. However, limited accessibility to the mitochondrial (mt) genome of P. tomentosa impedes phylogenetic and population genetic analyses and restricts functional gene research in Salicaceae family.

View Article and Find Full Text PDF

Spliced exon9 ADRM1 promotes liver oncogenicity via selective degradation of tumor suppressor FBXW7.

J Hepatol

January 2025

Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China. Electronic address:

Background & Aims: The ubiquitin receptor ADRM1/Rpn13 governs the specificity of eukaryotic protein degradation. By SMRT sequencing, we first discovered a novel spliced variant of ADRM1 with a skipped exon 9, termed ADRM1-ΔEx9, in human hepatocellular carcinoma (HCC). This study aimed to elucidate this novel ubiquitin receptor's underlying biology and clinical implications in HCC.

View Article and Find Full Text PDF

Full-length hepatitis B virus (HBV) transcripts of chimpanzees and patients treated with multidose (MD) HBV siRNA ARC-520 and entecavir (ETV) were characterized by single-molecule real-time (SMRT) sequencing, identifying multiple types of transcripts with the potential to encode HBx, HBsAg, HBeAg, core, and polymerase, as well as transcripts likely to be derived from dimers of dslDNA, and these differed between HBeAg-positive (HBeAg+) and HBeAg-negative (HBeAg-) individuals. HBV transcripts from the last follow-up ~30 months post-ARC-520 treatment were categorized from one HBeAg+ (one of two previously highly viremic patients that became HBeAg- upon treatment and had greatly reduced cccDNA products) and four HBeAg- patients. The previously HBeAg+ patient received a biopsy that revealed that he had 3.

View Article and Find Full Text PDF

As molecular research on hemp (Cannabis sativa L.) continues to advance, there is a growing need for the accumulation of more diverse genome data and more accurate genome assemblies. In this study, we report the three-way assembly data of a cannabidiol (CBD)-rich cannabis variety, 'Pink Pepper' cultivar using sequencing technology: PacBio Single Molecule Real-Time (SMRT) technology, Illumina sequencing technology, and Oxford Nanopore Technology (ONT).

View Article and Find Full Text PDF

Third generation sequencing transforming plant genome research: Current trends and challenges.

Gene

December 2024

Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, 781001, India. Electronic address:

In recent years, third-generation sequencing (TGS) technologies have transformed genomics and transcriptomics research, providing novel opportunities for significant discoveries. The long-read sequencing platforms, with their unique advantages over next-generation sequencing (NGS), including a definitive protocol, reduced operational time, and real-time sequencing, possess the potential to transform plant genomics. TGS optimizes and enhances the efficiency of data analysis by removing the necessity for time-consuming assembly tools.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!