Objective: To evaluate whether diffuse excessive high signal intensity (DEHSI) on term equivalent age MRI (TEA-MRI) predicts disability in preterm infants.

Design: This is a systematic review and meta-analysis. Medline, EMBASE, Cochrane Library, EMCARE, Google Scholar and MedNar databases were searched in July 2019. Studies comparing developmental outcomes of isolated DEHSI on TEA-MRI versus normal TEA-MRI were included. Two reviewers independently extracted data and assessed the risk of bias. Meta-analysis was undertaken where data were available in a format suitable for pooling.

Main Outcome Measures: Neurodevelopmental outcomes ≥1 year of corrected age based on validated tools.

Results: A total of 15 studies (n=1832) were included, of which data from 9 studies were available for meta-analysis. The pooled estimate (n=7) for sensitivity of DEHSI in predicting cognitive/mental disability was 0.58 (95% CI 0.34 to 0.79) and for specificity was 0.46 (95% CI 0.20 to 0.74). The summary area under the receiver operating characteristics (ROC) curve was low at 0.54 (CI 0.50 to 0.58). A pooled diagnostic OR (DOR) of 1 indicated that DEHSI does not discriminate preterm infants with and without mental disability. The pooled estimate (n=8) for sensitivity of DEHSI in predicting cerebral palsy (CP) was 0.57 (95% CI 0.37 to 0.75) and for specificity was 0.41 (95% CI 0.24 to 0.62). The summary area under the ROC curve was low at 0.51 (CI 0.46 to 0.55). A pooled DOR of 1 indicated that DEHSI does not discriminate between preterm infants with and without CP.

Conclusions: DEHSI on TEA-MRI did not predict future development of cognitive/mental disabilities or CP.

Prospero Registration Number: CRD42019130576.

Download full-text PDF

Source
http://dx.doi.org/10.1136/archdischild-2019-318207DOI Listing

Publication Analysis

Top Keywords

diffuse excessive
8
excessive high
8
high signal
8
signal intensity
8
term equivalent
8
systematic review
8
review meta-analysis
8
dehsi tea-mri
8
pooled estimate
8
sensitivity dehsi
8

Similar Publications

The current piston material, Al-12Si, lacks sufficient passivation in the acidic lubrication system of biodiesel engines, making it prone to corrosion in the presence of Cl. Fe amorphous particles exhibit good compatibility with Al-12Si, possessing strong corrosion resistance, excellent passivation ability, and good high-temperature stability. They are a potential reinforcement for enhancing the Al-12Si piston material.

View Article and Find Full Text PDF

Hydrogels are natural/synthetic polymer-based materials with a large percentage of water content, usually above 80 %, and are suitable for many application fields such as wearable sensors, biomedicine, cosmetics, agriculture, etc. However, their performance is susceptible to environmental changes in temperature, relative humidity, and mechanical deformation due to their aqueous and soft nature. We investigate the mechanical response of both filled and unfilled alginate/gellan hydrogels using a combined axial-torsional rheometric approach with cylindrical samples of large length/diameter ratio under controlled temperature and relative humidity.

View Article and Find Full Text PDF

Tigecycline (Tgc), a third-generation tetracycline is found as the last line of defense against multi-drug resistant bacteria. Recent increased rate of resistance to tgc, a human-restricted agent among animal bacteria poses a significant global health challenge. Overuse of first generation tetracyclines (Tet) and phenicols in animals have been suggested to be associated with Tgc resistance development.

View Article and Find Full Text PDF

Deficiency or excess of mineral elements in the environment is a primary factor limiting crop yields and nutritional quality. Lotus (Nelumbo nucifera) is an important aquatic crop in Asia, but the mechanism for accumulating mineral nutrients and coping with nutrient deficiency/excess is still largely unknown. Here, we identified NnMTP10, a member of the cation diffusion facilitator family, by screening the cDNA library of lotus.

View Article and Find Full Text PDF

X-ray Responsive Antioxidant Drug-Free Hydrogel for Treatment of Radiation Skin Injury.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.

Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!