Background: Homozygous frameshift mutation in RUBCN (KIAA0226), known to result in endolysosomal machinery defects, has previously been reported in a single Saudi family with autosomal recessive spinocerebellar ataxia (Salih ataxia, SCAR15, OMIM # 615705). The present report describes the clinical, neurophysiologic, neuroimaging, and genetic findings in a second unrelated Saudi family with two affected children harboring identical homozygous frameshift mutation in the gene. It also explores and documents an ancient founder cerebellar ataxia mutation in the Arabian Peninsula.
Case Presentation: The present family has two affected males (aged 6.5 and 17 years) with unsteady gait apparent since learning to walk at 2.5 and 3 years, respectively. The younger patient showed gait ataxia and normal reflexes. The older patient had saccadic eye movement, dysarthria, mild upper and lower limb and gait ataxia (on tandem walking), and enhanced reflexes in the lower limbs. Cognitive abilities were mildly impaired in the younger sibling (IQ 67) and borderline in the older patient (IQ 72). Nerve conduction studies were normal in both patients. MRI was normal at 2.5 years in the younger sibling. Brain MRI showed normal cerebellar volume and folia in the older sibling at the age of 6 years, and revealed minimal superior vermian atrophy at the age of 16 years. Autozygome and exome analysis showed both affected have previously reported homoallelic mutation in RUBCN (NM_014687:exon18:c.2624delC:p.A875fs), whereas the parents are carriers. Autozygosity mapping focused on smallest haplotype on chromosome 3 and mutation age analysis revealed the mutation occurred approximately 1550 years ago spanning about 62 generations.
Conclusions: Our findings validate the slowly progressive phenotype of Salih ataxia (SCAR15, OMIM # 615705) by an additional family. Haplotype sharing attests to a common founder, an ancient RUBCN mutation in the Arab population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249383 | PMC |
http://dx.doi.org/10.1186/s12883-020-01761-w | DOI Listing |
Proc Natl Acad Sci U S A
July 2020
Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720;
Rubicon is a potent negative regulator of autophagy and a potential target for autophagy-inducing therapeutics. Rubicon-mediated inhibition of autophagy requires the interaction of the C-terminal Rubicon homology (RH) domain of Rubicon with Rab7-GTP. Here we report the 2.
View Article and Find Full Text PDFBMC Neurol
May 2020
Department of Genetics, King Faisal Specialist Hospital and Research Centre, MBC: 03, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia.
Background: Homozygous frameshift mutation in RUBCN (KIAA0226), known to result in endolysosomal machinery defects, has previously been reported in a single Saudi family with autosomal recessive spinocerebellar ataxia (Salih ataxia, SCAR15, OMIM # 615705). The present report describes the clinical, neurophysiologic, neuroimaging, and genetic findings in a second unrelated Saudi family with two affected children harboring identical homozygous frameshift mutation in the gene. It also explores and documents an ancient founder cerebellar ataxia mutation in the Arabian Peninsula.
View Article and Find Full Text PDFAutophagy
July 2019
a The affiliated Hospital of Guilin Medical University , Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guangxi Neurological Diseases Clinical Research Center, Guilin , Guangxi , China.
UVRAG (UV radiation resistance associated) is an important regulator of mammalian macroautophagy/autophagy by interacting with BECN1, PIK3C3, and RUBCN. Phosphorylation of UVRAG by MTORC1 negatively regulates autophagosome maturation under nutrient-enriched conditions. However, how UVRAG ubiquitination is regulated is still unknown.
View Article and Find Full Text PDFGenet Med
March 2019
Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
Purpose: Establishing links between Mendelian phenotypes and genes enables the proper interpretation of variants therein. Autozygome, a rich source of homozygous variants, has been successfully utilized for the high throughput identification of novel autosomal recessive disease genes. Here, we highlight the utility of the autozygome for the high throughput confirmation of previously published tentative links to diseases.
View Article and Find Full Text PDFAutophagy
January 2019
a Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology , Bosisio Parini , Lecco , Italy.
ZFYVE26/Spastizin and SPG11/Spatacsin encode 2 large proteins that are mutated in hereditary autosomal-recessive spastic paraplegia/paraparesis (HSP) type 15 (AR-SPG15) and type 11 (AR-SPG11), respectively. We previously have reported that AR-SPG15-related ZFYVE26 mutations lead to autophagy defects with accumulation of immature autophagosomes. ZFYVE26 and SPG11 were found to be part of a complex including the AP5 (adaptor related protein complex 5) and to have a critical role in autophagic lysosomal reformation with identification of autophagic and lysosomal defects in cells with both AR-SPG15- and AR-SPG11-related mutations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!