Expanded helicenes are large, structurally flexible π-frameworks that can be viewed as building blocks for more complex chiral nanocarbons. Here we report a gram-scale synthesis of an alkyne-functionalized expanded [11]helicene and its single-step transformation into two structurally and functionally distinct types of macrocyclic derivatives: (1) a figure-eight dimer via alkyne metathesis (also gram scale) and (2) two arylene-bridged expanded helicenes via Zr-mediated, formal [2+2+] cycloadditions. The phenylene-bridged helicene displays a substantially higher enantiomerization barrier (22.1 kcal/mol) than its helicene precursor (<11.9 kcal/mol), which makes this a promising strategy to access configurationally stable expanded helicenes. In contrast, the topologically distinct figure-eight retains the configurational lability of the helicene precursor. Despite its lability in solution, this compound forms homochiral single crystals. Here, the configuration is stabilized by an intricate network of two distinct yet interconnected helical superstructures. The enantiomerization mechanisms for all new compounds were probed using density functional theory, providing insight into the flexibility of the figure-eight and guidance for future synthetic modifications in pursuit of non-racemic macrocycles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c03177DOI Listing

Publication Analysis

Top Keywords

expanded helicenes
12
expanded
4
helicenes synthons
4
synthons chiral
4
chiral macrocyclic
4
macrocyclic nanocarbons
4
nanocarbons expanded
4
helicenes large
4
large structurally
4
structurally flexible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!