A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Developmental toxicity and transcriptome analysis of 4-epianhydrotetracycline to zebrafish (Danio rerio) embryos. | LitMetric

Developmental toxicity and transcriptome analysis of 4-epianhydrotetracycline to zebrafish (Danio rerio) embryos.

Sci Total Environ

Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China. Electronic address:

Published: September 2020

As a primary degradation by-product of tetracycline (TC), 4-Epianhydrotetracycline (4-EATC) has been detected frequently in the aquatic environment, which may pose a potential environmental risk to aquatic organisms. Up to now, however, the toxicology study on 4-EATC to aquatic organisms is limited. In the present study, in order to better understand the toxic mechanism of 4-EATC, developmental toxicity including lethal and sublethal effects of 4-EATC and TC were investigated. The results showed that the developmental toxicity of 4-EATC to zebrafish embryos was stronger than that of TC. The 96 h LC value of 4-EATC to zebrafish embryos was 29.13 mg/L. Malformations seemed to be the most sensitive sublethal endpoint of 4-EATC exposure, and the 96 h EC value was 8.57 mg/L. Transcriptome response of 4-EATC to zebrafish embryos was determined. The results showed that 430 different expression genes (DEGs) caused by 4-EATC, and most enriched in tryptophan (TRP) metabolism pathway. Annotation of DEGs in the TRP metabolism demonstrated that expression of 4 gene products in tryptophan metabolized along the kynurenine (KYN) pathway were changed. Disorder of TRP catabolism in KYN pathway was a potential mechanism of 4-EATC toxicity to zebrafish embryos.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.139227DOI Listing

Publication Analysis

Top Keywords

zebrafish embryos
16
developmental toxicity
12
4-eatc zebrafish
12
4-eatc
10
aquatic organisms
8
mechanism 4-eatc
8
trp metabolism
8
kyn pathway
8
zebrafish
5
embryos
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!