Supramolecular solvent-based microextraction of aryl-phosphate flame retardants in indoor dust from houses and education buildings in Spain.

Sci Total Environ

Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building (Annex), Campus of Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.

Published: September 2020

Aryl-phosphate flame retardants (aryl-OPFRs) are flame retardants or plasticizers (among other functions) that can be found in a wide variety of products, from furniture and textiles to cars and electronic equipment. There is an increasing concern about the human exposure to these contaminants due to their ubiquity (as additives they can be easily released from the product to the environment) and potential toxicity. In this study, we investigated the presence of six representative aryl-OPFRs, two well-known aryl-OPFRs (triphenyl phosphate, TPHP and 2-ethylhexyl diphenyl phosphate, EHDPP), two novel aryl-OPFRs (cresyl diphenyl phosphate, CDP and isodecyl diphenyl phosphate, IDPP) and two oligomeric aryl-OPFRs [bisphenol A bis(diphenyl phosphate), BDP and resorcinol bis(diphenyl phosphate, RDP] in indoor dust from houses and education buildings from Spain. Sample treatment was carried out by a novel and simple procedure based on supramolecular solvents (SUPRAS) prior to LC-MS/MS analysis. The median Σaryl-OPFRs was two times higher in classrooms than in houses, being particularly high at University classrooms. The most abundant aryl-OPFR in houses was TPHP (median 497 ng·g) while EHDPP (median 407 ng·g) and IDPP (median 403 ng·g) were dominant in classrooms. This is the first study reporting IDPP, BDP and RDP in different education buildings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.139291DOI Listing

Publication Analysis

Top Keywords

flame retardants
12
education buildings
12
diphenyl phosphate
12
aryl-phosphate flame
8
indoor dust
8
dust houses
8
houses education
8
buildings spain
8
bisdiphenyl phosphate
8
phosphate
6

Similar Publications

TDCPP promotes apoptosis and inhibits the calcium signaling pathway in human neural stem cells.

Sci Total Environ

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

Tris (1, 3-dichloro-2-propyl) phosphate (TDCPP) is an extensively used organophosphorus flame retardant (OFR). Previous studies have suggested that it has neurotoxic effects, but the neurotoxicity mechanism is still unclear. Neural stem cells are an important in vitro model for studying the neurotoxicity mechanism of pollutants.

View Article and Find Full Text PDF

Occurrence and bioaccumulation of organophosphate flame retardants in high-altitude regions: A comprehensive field survey in Qinghai Province, China.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.

Organophosphate flame retardants (OPFRs) are a class of substances that pose potential risks to human health and ecosystems due to their large-scale production, wide range of applications, and ubiquitous presence in the environment. With their potential for long-range atmospheric transport (LRAT), OPFR pollution in high-altitude areas has become an increasing concern. Herein, a general pretreatment method for OPFRs across various sample matrices was established and combined with gas chromatography-mass spectrometry (GC-MS), utilizing a programmed temperature ramp in the vaporization chamber to enable high-throughput detection of OPFRs in various environmental matrices.

View Article and Find Full Text PDF

Halogenated organic compounds in mangrove sediments from Bintan Island, Indonesia: Occurrence, profiles, sources, and potential ecological risk.

Environ Pollut

January 2025

Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan. Electronic address:

The first comprehensive analysis of halogenated organic compounds (HOCs), including 209 full congeners of polychlorinated biphenyls (PCBs), 26 organochlorinated pesticides (OCPs), 41 polybrominated diphenyl ethers (PBDEs), and four other brominated flame retardants (BFRs), was performed on surface mangrove sediments from Bintan Island, Province of the Riau Archipelago, Indonesia. Among the measured HOC contaminants, the mean concentration of ∑PCBs (2.3±0.

View Article and Find Full Text PDF

Functionalization of chitosan and its application in flame retardant: A review.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

In recent years, bio-based flame retardants have gained significant attention as sustainable alternatives, achieving important breakthroughs in flame retardancy and becoming a key focus for future development. Derived from biomass, chitosan (CS) has been widely used in the field of advanced functional materials. However, in the field of flame retardancy, chitosan alone shows limited effectiveness, leading researchers to explore its reactive functional groups for creating multifunctional flame retardant chitosan composites (FRCC).

View Article and Find Full Text PDF

The durability and flame retardancy of cotton fabrics have been the focus of long-term research. In this paper, a method for preparing flame retardants through the direct modification of biomass was proposed, and the durable flame retardant of homologous cottonseed meal modified biomass flame retardants for cotton fabrics was achieved through biomass composition analysis and modeling. In this study, a cottonseed meal-phosphoric acid-boric acid synergistic bio-based flame retardant (CPB) was synthesized and characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!