Previous studies of the dynamics of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) have focused on deep stratified lakes. The objective of this study is to present an in-depth investigation of the structure and dynamics of sulfur bacteria (including SRB and SOB) in the water column of shallow freshwater lakes. A cyanobacterial bloom biomass (CBB)-amended mesocosm experiment was conducted in this study, in which water was taken from a shallow eutrophic lake with sulfate levels near 40 mg L. Illumina sequencing was used to investigate SRB and SOB species involved in CBB decomposition and the effects of the increases in sulfate input on the water column microbial community structure. The accumulation of dissolved sulfide (∑HS) produced by SRB during CBB decomposition stimulated the growth of SOB, and ∑HS was then oxidized back to sulfate by SOB in the water column. Chlorobaculum sequences (the main SOB species in the study) were significantly influenced by increases in sulfate input, with relative abundance increasing approximately four-fold in treatments amended with 40 mg L sulfate (referred to as 40S) when compared to the treatment without additional sulfate addition (referred to as CU). Additionally, an increase in SOB number was observed from day 26-37, concurrent with the decrease in SRB number, indicating the succession of sulfur bacteria. These findings suggest that biological sulfur oxidation and succession of sulfur bacteria occur in the water column during CBB decomposition in shallow freshwater ecosystems, and the increases in sulfate input stimulate microbial sulfur oxidation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.127101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!