A combined-modification method of carboxymethyl β-cyclodextrin and lignin for nano-hydroxyapatite to reinforce poly(lactide-co-glycolide) for bone materials.

Int J Biol Macromol

National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Sustainable Resources Processing and Advanced Materials, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.

Published: October 2020

Lignin is the second most abundant natural biomacromolecule. A new surface-modification for nano-hydroxyapatite (n-HA) by carboxymethyl β-cyclodextrin (CM-β-CD) and lignin and its reinforce effect for poly(lactide-co-glycolide) (PLGA) were investigated by Fourier transformation infrared (FTIR), X-ray diffraction pattern (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), dispersion images, the tensile tests, scanning electron microscope (SEM), differential scanning calorimeter (DSC) and polarized optical microscopy (POM), compared to the singled-modification of CM-β-CD or lignin. The results showed that the appropriate combined-modified n-HA displayed excellent synergistic effects for increasing the dispersion, yielding good interfacial bonding between n-HA with PLGA matrix. The tensile strength of the composite was still 14.53% higher than that of PLGA, for a n-HA addition amount of 15 wt%, which was significantly better than that for the singled-modified n-HA. Additionally, in vitro degradation behavior was evaluated by soaking in simulated body fluid (SBF), and their cell response was carried out by interaction tests with bone mesenchymal stem cells. The results indicated that the combined-modification method promoted good degradation behavior and apatite deposition, as well as excellent cell biocompatibility. This study may offer an important guidance to obtain PLGA-based composites reinforced by surface-modified n-HA as bone materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.05.142DOI Listing

Publication Analysis

Top Keywords

combined-modification method
8
carboxymethyl β-cyclodextrin
8
reinforce polylactide-co-glycolide
8
bone materials
8
cm-β-cd lignin
8
degradation behavior
8
n-ha
6
method carboxymethyl
4
lignin
4
β-cyclodextrin lignin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!