Genome to phenome tools: In vivo and in vitro transfection of Crassostrea virginica hemocytes.

Fish Shellfish Immunol

Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA. Electronic address:

Published: August 2020

The sequencing of the Crassostrea virginica genome has brought back the interest for gene delivery and editing methodologies. Here, we report the expression in oyster hemocytes of two heterologous expression vectors under the CMV promoter delivered with dendrimers. Expression was monitored using confocal microscopy, flow cytometry, and immunofluorescence assay. C. virginica hemocytes were able to express the green fluorescence protein and Crassostrea gigas vascular endothelial growth factor under CMV viral promoter both in vivo and in vitro. These results provide the bases for interrogating the genome and adapting genome editing methodologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2020.05.022DOI Listing

Publication Analysis

Top Keywords

vivo vitro
8
crassostrea virginica
8
virginica hemocytes
8
editing methodologies
8
genome
4
genome phenome
4
phenome tools
4
tools vivo
4
vitro transfection
4
transfection crassostrea
4

Similar Publications

Neovascular age-related macular degeneration (nAMD), characterized by choroidal neovascularization (CNV), is one of the leading causes of severe visual impairment and irreversible vision loss around the world. Subretinal fibrosis (SRF) contributes to the incomplete response to anti-vascular endothelial growth factor (VEGF) treatment and is one of the main reasons for long-term poor visual outcomes in nAMD. Reducing SRF is urgently needed in the anti-VEGF era.

View Article and Find Full Text PDF

Background: Smooth muscle cells (SMCs) of the proximal thoracic aorta are derived from second heart field (SHF) and cardiac neural crest lineages. Recent studies, both in vitro and in vivo, have implied relevance of lineage-specific SMC functions in the pathophysiology of thoracic aortic diseases; however, whether 2 lineage-derived SMCs have any predisposed transcriptional differences in the control aorta remains unexplored.

Methods: Single-cell RNA sequencing and single-nucleus assay for transposase-accessible chromatin sequencing were performed on isolated cells from the aortic root and ascending aortas of 14-week-old SHF-traced () and cardiac neural crest-traced () male mice.

View Article and Find Full Text PDF

Ultrasound-Controllable Release of Carbon Monoxide in Multifunctional Polymer Coating for Synergetic Treatment of Catheter-Related Infections.

Adv Healthc Mater

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.

Medical catheters are susceptible to biological contamination and pathogen invasion, leading to infection and inflammatory complications. The development of antimicrobial coatings for medical devices has emerged as a promising strategy. However, limited biological functionality and the incompatibility between bactericidal properties and biosafety remain great challenges.

View Article and Find Full Text PDF

Introduction: Postpartum dairy cows are susceptible to negative energy balance caused by decreased feed intake and the initiation of lactation. Sijunzi San, a famous Chinese traditional herbal formulation, can promote gastrointestinal digestion and absorption and improve disorders of intestinal microbiota. Therefore, we hypothesized that Sijunzi San might alleviate negative energy balance in postpartum dairy cows by modulating the structure of the rumen microbiota and enhancing its fermentation capacity.

View Article and Find Full Text PDF

PIM1 instigates endothelial-to-mesenchymal transition to aggravate atherosclerosis.

Theranostics

January 2025

Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, China.

Endothelial-to-mesenchymal transition (EndMT) is a cellular reprogramming mechanism by which endothelial cells acquire a mesenchymal phenotype. Endothelial cell dysfunction is the initiating factor of atherosclerosis (AS). Increasing evidence suggests that EndMT contributes to the occurrence and progression of atherosclerotic lesions and plaque instability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!