Three sodium channel mutations from Aedes albopictus confer resistance to Type I, but not Type II pyrethroids.

Insect Biochem Mol Biol

Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China; Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, China. Electronic address:

Published: August 2020

AI Article Synopsis

  • Voltage-gated sodium channels are key targets for pyrethroid insecticides, but resistance in insect pests like Aedes albopictus has increased due to overuse.
  • Three mutations in the sodium channel gene of resistant populations were identified, but their functional impacts on pyrethroid sensitivity were unclear.
  • Introducing these mutations into a different sodium channel revealed that they significantly decreased sensitivity to Type I pyrethroids, yet had minimal effects on channel properties and did not increase resistance to permethrin or bifenthrin, highlighting the need for further research on resistance mechanisms.

Article Abstract

Voltage-gated sodium channels are the major targets of several classes of insecticides, including pyrethroids. However, sensitivities of many insect pest species to pyrethroids have gradually decreased due to overuse in pest management programs. One major mechanism of pyrethroid resistance known as knockdown resistance (kdr) involves mutations in the sodium channel gene. Three new mutations in helix IIIS6 of sodium channel (I1532T and F1534S/L) are recently detected in several pyrethroid-resistant populations of Aedes albopictus. The roles of these mutations in pyrethroid resistance have not been functionally examined. We introduced mutations I1532T and F1534S/L alone or in combination into the pyrethroid-sensitive sodium channel AaNa1-1 from Aedes aegypti by site-directed mutagenesis and explored effects of these mutations on the channel gating and sensitivity to pyrethroids. No significant modifications in channel properties were detected, except for a slightly changed activation by F1534S and I1532T + F1534S. However, I1532T and F1534S/L substantially reduced the channel sensitivity to Type I pyrethroids, permethrin and bifenthrin, but not to two Type II pyrethroids, deltamethrin and cypermethrin. The double mutations did not increase the channel resistance to permethrin or bifenthrin. We have built a Na1.4-based homology model of the AaNa1-1 channel and docked pyrethroids in the model to explain different sensitivities of the mutants to Type I and Type II pyrethroids. The results will assist in developing molecular markers for monitoring pest resistance to pyrethroids. They also provide new insight in the molecular basis of different action of Type I and Type II pyrethroids on sodium channels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibmb.2020.103411DOI Listing

Publication Analysis

Top Keywords

type pyrethroids
20
sodium channel
16
type type
12
i1532t f1534s/l
12
pyrethroids
10
channel
9
aedes albopictus
8
type
8
sodium channels
8
pyrethroid resistance
8

Similar Publications

Role of mutation G255A in modulating pyrethroid sensitivity in insect sodium channels.

Int J Biol Macromol

January 2025

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China; School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China. Electronic address:

A voltage-gated sodium channel (VGSC) plays a crucial role in insect electrical signals, and it is a target for various naturally occurring and synthesized neurotoxins, including pyrethroids and dichlorodiphenyltrichloroethane. The type of agent is typically widely used to prevent and control sanitary and agricultural pests. The perennial use of insecticides has caused mutations in VGSCs that have given rise to resistance in most insects.

View Article and Find Full Text PDF

Urban environments are exposed to a substantial range of anthropic pressures, including chemical exposure. While trace metals and legacy pollutants have been well documented, the extent of wildlife exposure to emerging contaminants has received little attention, in terrestrial mammals. Concentrations of trace elements (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Pb and Zn) and 48 organic pollutants (Polychlorinated Biphenyls: PCBs, Organochlorine Pesticides: OCPs, Polycyclic Aromatic Hydrocarbons: PAHs, phthalates and pyrethroid pesticides) were measured in tissues of European hedgehogs (Erinaceus europaeus) in southern Sweden.

View Article and Find Full Text PDF

Enteroendocrine cells (EECs) are a rare cell type of the intestinal epithelium. Various subtypes of EECs produce distinct repertoires of monoamines and neuropeptides which modulate intestinal motility and other physiologies. EECs also possess neuron-like properties, suggesting a potential vulnerability to ingested environmental neurotoxicants.

View Article and Find Full Text PDF

Background: Aedes aegypti transmits various arthropod-borne diseases such as dengue, posing a significant burden to public health in tropical and subtropical regions. Pyrethroid-based control strategies are effective in managing this vector; however, the development of insecticide resistance has hindered these efforts. Hence, long-term monitoring of insecticide resistance in mosquito populations is crucial for effective vector and disease control.

View Article and Find Full Text PDF

Alanine to glycine substitution in the PyR2 confers sodium channel resistance to Type I pyrethroids.

Pest Manag Sci

December 2024

The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China.

Background: Aedes aegypti is a primary urban vector of dengue, yellow fever, Zika and chikungunya worldwide. Pyrethroid insecticides are the most effective insecticides for controlling Ae. aegypti.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!