Statistical experimental designs were used to formulate a culture medium for zeaxanthin production by an Antarctic Flavobacterium sp. P8 strain. Eleven nutritional factors were assayed in shaken flasks. The effect of temperature on zeaxanthin and carotenoid production was also studied. Peptone, yeast extract, and sodium chloride were the nutrients that caused the principal impact on the biomass growth. These components were further studied to enhance zeaxanthin and total carotenoid concentrations. Although a high production rate of zeaxanthin and carotenoids was achieved, the aerobic characteristics of the bacterial strain and the oxygen requirements for zeaxanthin biosynthesis incorporate a factor that requires additional consideration. Scaling up the process to a 5 L-bioreactor that increased dissolved oxygen availability resulted in a 4.5-fold increase in the total carotenoid content and an almost 9-fold increase in zeaxanthin, which represented 98% of the total carotenoids produced. The results reveal that Flavobacterium sp. P8 is a promising strain for zeaxanthin production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2020.05.014 | DOI Listing |
Plant Biotechnol J
January 2025
Department of Plant Breeding and Biotechnology, Centro IFAPA de Málaga, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Málaga, Spain.
Carotenoids are a diverse group of pigments imparting red, orange, and yellow hues to many horticultural plants, also enhancing their nutritional properties and health benefits. In strawberry, the genetic and molecular mechanisms regulating the natural variation of fruit carotenoid composition remain largely unexplored. In this study, we use a population segregating in yellow/white flesh to detect a major quantitative trait locus (QTL), qYellow Flesh-4B, located on chromosome 4B and accounting for 82% of total phenotypic variation.
View Article and Find Full Text PDFFront Nutr
January 2025
Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
Background: Carotenoids are well-established for their potent antioxidant properties; however, their potential association with severe headaches or migraines remains largely unexamined. This study was conducted to explore the relationship between serum carotenoid levels and the prevalence of severe headaches or migraines within the US population.
Methods: We utilized data from the 2001-2004 National Health and Nutrition Examination Survey (NHANES), which comprised a total of 8,910 participants.
Plant Cell Rep
January 2025
Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland.
Carrot callus grown on a medium with increased nitrogen have reduced carotenoid accumulation, changed gene expression, high amount of vesicular plastids and altered cell wall composition. Carotenoid biosynthesis is vital for plant development and quality, yet its regulation under varying nutrient conditions remains unclear. To explore the effects of nitrogen (N) availability, we used carrot (Daucus carota L.
View Article and Find Full Text PDFCurr Pharm Biotechnol
January 2025
Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia.
Nature has been acknowledged as a fundamental source of diverse bioactive molecules. Among natural carotenoids, lutein, zeaxanthin, and their oxidative metabolites are specifically deposited in the macular region of living organisms. Lutein and zeaxanthin are carotenoids primarily found in green leafy vegetables, eggs, and various fruits.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
Gloriosa L. possesses exceptional ornamental value, with its floral hues exhibiting a wide range of variations. In this study, we employed sophisticated colorimetry, Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS), and transcriptome sequencing to investigate the phenotypic expression of tepal colors, the composition of carotenoids and anthocyanins, and the differential gene expression in four Gloriosa varieties during their full bloom phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!