Aims: Emerging findings demonstrate the critical roles of noncoding RNA (ncRNA) in asthma development. Nevertheless, the biological roles of circular RNA (circRNA) in airway remodeling are still elusive. Here, the present research focuses on the regulation of circRNA circHIPK3 in airway smooth muscle cells (ASMCs) proliferation and migration.
Materials And Methods: The sequence of circRNA was detected using Sanger sequencing. Cellular phenotypes were detected using CCK-8 assay, transwell and flow cytometer assay. The potential binding of miRNA and downstream and upstream targets was detected using dual-luciferase reporter assay.
Key Findings: Results showed that circHIPK3 was significantly upregulated in platelet-derived growth factor (PDGF) induced ASMCs. Functional analysis using CCK-8, transwell migration assays and flow cytometry analysis showed that circHIPK3 knockdown repressed proliferation, migration and up-regulated the apoptosis in ASMCs. Mechanistic assays showed that circHIPK3 sponged miR-326 in the cytoplasm, thereby targeting stromal interaction molecule 1 (STIM1) to regulate ASMCs' proliferation, migration and apoptosis.
Significance: Collectively, the data elucidates that circHIPK3 functions as a regulator in the airway remodeling during the asthma development through miR-326/STIM1 axis, providing a novel insight for the therapeutic target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2020.117835 | DOI Listing |
Iran J Basic Med Sci
January 2025
Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
Gliomas are the most common lethal tumors of the brain associated with a poor prognosis and increased resistance to chemo-radiotherapy. Circular RNAs (circRNAs), newly identified noncoding RNAs, have appeared as critical regulators of therapeutic resistance among multiple cancers and gliomas. Since circRNAs are aberrantly expressed in glioma and may act as promoters or inhibitors of therapeutic resistance, we categorized alterations of these specific RNAs expression in therapy resistant-glioma in three different classes, including chemoresistance, radioresistance, and glioma stem cell (GSC)-regulation.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.
DNA copy number changes via chromosomal rearrangements or the production of extrachromosomal circular DNA. Here, we demonstrate that the histone deacetylase Sir2 maintains the copy number of budding yeast ribosomal RNA gene [ribosomal DNA (rDNA)] by suppressing end resection of DNA double-strand breaks (DSBs) formed upon DNA replication fork arrest in the rDNA and their subsequent homologous recombination (HR)-mediated rDNA copy number changes during DSB repair. Sir2 represses transcription from the regulatory promoter E-pro located near the fork arresting site.
View Article and Find Full Text PDFJ Adv Res
January 2025
Department of Urology, Center for Regeneration and Aging, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000 China. Electronic address:
Introduction: Extrachromosomal circular DNA (eccDNA) plays significant roles in cancer progression and prognosis. However, it remains unclear whether cell-free eccDNA, considered more stable than linear DNA, possesses cancer-specific genomic features. Furthermore, the biogenesis and function of eccDNAs are not yet fully understood.
View Article and Find Full Text PDFCell Genom
January 2025
Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden. Electronic address:
Newts have large genomes harboring many repeat elements. How these elements shape the genome and relate to newts' unique regeneration ability remains unknown. We present here the chromosome-scale assembly of the 20.
View Article and Find Full Text PDFBraz J Otorhinolaryngol
January 2025
Tibet University, Medical College, Lhasa, China. Electronic address:
Objective: High altitude hypobaric hypoxia can induce hearing impairment and hearing acclimatization, but few studies have been performed to decipher the potential transition between the two states. To decipher transition-related circular RNAs (circRNAs)-microRNAs (miRNAs)-messenger RNA (mRNAs) regulatory network.
Methods: Wistar rats were airlifted from plain to high altitude and maintained for 30 days and 60 days.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!