Testicular peritubular cells (TPCs) are smooth muscle-like cells, which form a compartment surrounding the seminiferous tubules. Previous studies employing isolated human testicular peritubular cells (HTPCs) indicated that their roles in the testis go beyond sperm transport and include paracrine and immunological contributions. Peritubular cells from a non-human primate (MKTPCs), the common marmoset monkey, Callithrix jacchus, share a high degree of homology with HTPCs. However, like their human counterparts these cells age in vitro and replicative senescence limits in-depth functional or mechanistic studies. Therefore, a stable cellular model was established. MKTPCs of a young adult animal were immortalized by piggyBac transposition of human telomerase (hTERT), that is, without the expression of viral oncogenes. Immortalized MKTPCs (iMKTPCs) grew without discernable changes for more than 50 passages. An initial characterization revealed typical genes expressed by peritubular cells (androgen receptor (AR), smooth-muscle actin (ACTA2), calponin (CNN1)). A proteome analysis of the primary MKTPCs and the derived immortalized cell line confirmed that the cells almost completely retained their phenotype. To test whether they respond in a similar way as HTPCs, iMKTPCs were challenged with forskolin (FSK) and ATP. As HTPCs, they showed increased expression level of the StAR protein (StAR) after FSK stimulation, indicating steroidogenic capacity. ATP increased the expression of pro-inflammatory factors (e.g. IL1B; CCL7), as it is the case in HTPCs. Finally, we confirmed that iMKTPCs can efficiently be transfected. Therefore, they represent a highly relevant translational model, which allows mechanistic studies for further exploration of the roles of testicular peritubular cells.

Download full-text PDF

Source
http://dx.doi.org/10.1530/REP-20-0100DOI Listing

Publication Analysis

Top Keywords

peritubular cells
24
testicular peritubular
12
cells
9
cellular model
8
mechanistic studies
8
increased expression
8
peritubular
6
htpcs
5
translational cellular
4
model study
4

Similar Publications

Partial rejuvenation of the spermatogonial stem cell niche after gender-affirming hormone therapy in trans women.

Elife

January 2025

Biology of the Testis (BITE) Laboratory, Genetics, Reproduction and Development (GRAD) Research Group, Vrije Universiteit Brussel, Brussels, Belgium.

Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys.

View Article and Find Full Text PDF

Aims/introduction: Fatty acid-binding protein (FABP) 4, which acts as an adipokine secreted by adipocytes, macrophages, and capillary endothelial cells, is expressed in injured glomerular cells. It has been reported that urinary (U-) FABP4 is associated with renal dysfunction and proteinuria in several glomerular kidney diseases. However, the clinical significance of U-FABP4 in diabetic kidney disease (DKD) remains undetermined.

View Article and Find Full Text PDF

While the Banff classification dichotomizes kidney allograft rejection based on the localization of the cells in the different compartments of the cortical kidney tissue [schematically interstitium for T cell mediated rejection (TCMR) and glomerular and peritubular capillaries for antibody-mediated rejection (AMR)], there is a growing evidences that subtyping the immune cells can help refine prognosis prediction and treatment tailoring, based on a better understanding of the pathophysiology of kidney allograft rejection. In the last few years, multiplex IF techniques and automatic counting systems as well as transcriptomics studies (bulk, single-cell and spatial techniques) have provided invaluable clues to further decipher the complex puzzle of rejection. In this review, we aim to better describe the inflammatory infiltrates that occur during the course of kidney transplant rejection (active AMR, chronic active AMR and acute and chronic active TCMR).

View Article and Find Full Text PDF

Exploring the interplay between inflammation and male fertility.

FEBS J

December 2024

UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal.

Male fertility results from a complex interplay of physiological, environmental, and genetic factors. It is conditioned by the properly developed anatomy of the reproductive system, hormonal regulation balance, and the interplay between different cell populations that sustain an appropriate and functional environment in the testes. Unfortunately, the mechanisms sustaining male fertility are not flawless and their perturbation can lead to infertility.

View Article and Find Full Text PDF

Renal lesions due to systemic lupus erythematosus (SLE) are defined as lupus nephritis (LN), a renal disease characterized by the deposition of immunoglobulin (Ig)G-based immune complexes in the kidney and the appearance of double-stranded DNA and Smith antibodies. In particular, deposition of IgG3, which has strong complement binding properties, under the endothelium or in the mesangium activates the classical complement pathway of C1q, C4, and C3, leading to renal damage. This step is followed by migration of inflammatory cells, including neutrophils and monocytes, which induce inflammation in the glomerular capillaries and cause mesangiolysis and endothelial cell damage, resulting in endocapillary proliferative nephritis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!